Search results
Results from the WOW.Com Content Network
Instead, the half-life is defined in terms of probability: "Half-life is the time required for exactly half of the entities to decay on average". In other words, the probability of a radioactive atom decaying within its half-life is 50%. [2] For example, the accompanying image is a simulation of many identical atoms undergoing radioactive decay.
This is a list of radioactive nuclides (sometimes also called isotopes), ordered by half-life from shortest to longest, in seconds, minutes, hours, days and years. Current methods make it difficult to measure half-lives between approximately 10 −19 and 10 −10 seconds. [1]
So, for example, digoxin has a half-life (or t 1 / 2 ) of 24–36 h; this means that a change in the dose will take the best part of a week to take full effect. For this reason, drugs with a long half-life (e.g., amiodarone , elimination t 1 / 2 of about 58 days) are usually started with a loading dose to achieve their desired ...
A more intuitive characteristic of exponential decay for many people is the time required for the decaying quantity to fall to one half of its initial value. (If N(t) is discrete, then this is the median life-time rather than the mean life-time.) This time is called the half-life, and often denoted by the symbol t 1/2. The half-life can be ...
At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour). A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode .
Carbon-14 (and other isotopes generated by cosmic rays) and daughters of radioactive primordial elements, such as radium, polonium, etc. 41 of these have a half life of greater than one hour. Radioactive synthetic half-life ≥ 1.0 hour). Includes most useful radiotracers. 662 989 These 989 nuclides are listed in the article List of nuclides.
A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state levels (higher energy levels). ). "Metastable" describes nuclei whose excited states have half-lives 100 to 1000 times longer than the half-lives of the excited nuclear states that decay with a "prompt" half life (ordinarily on the order of 10
As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years. The isotopes in beta-decay stable isobars that are also stable with regards to double beta decay with mass number A = 5, A = 8, 143 ≤ A ≤ 155, 160 ≤ A ≤ 162, and A ≥ 165 are theorized to undergo alpha decay.