Search results
Results from the WOW.Com Content Network
Reducing agents and oxidizing agents are the ones responsible for corrosion, which is the "degradation of metals as a result of electrochemical activity". [3] Corrosion requires an anode and cathode to take place. The anode is an element that loses electrons (reducing agent), thus oxidation always occurs in the anode, and the cathode is an ...
A redox titration [1] is a type of titration based on a redox reaction between the analyte and titrant. It may involve the use of a redox indicator and/or a potentiometer. A common example of a redox titration is the treatment of a solution of iodine with a reducing agent to produce iodide using a starch indicator to help detect the endpoint.
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).
An oxidizing acid is a Brønsted acid that is a strong oxidizing agent. Most Brønsted acids can act as oxidizing agents, because the acidic proton can be reduced to hydrogen gas. Some acids contain other structures that act as stronger oxidizing agents than hydrogen ions. Generally, they contain oxygen in their anionic structure.
The reduction potential is a measure of the tendency of the oxidizing agent to be reduced. Its value is zero for H + + e − → 1 ⁄ 2 H 2 by definition, positive for oxidizing agents stronger than H + (e.g., +2.866 V for F 2) and negative for oxidizing agents that are weaker than H + (e.g., −0.763V for Zn 2+). [8]: 873
Hydrogen gas is a reducing agent when it reacts with non-metals and an oxidizing agent when it reacts with metals. 2 Li (s) + H 2 (g) → 2 LiH (s) [a] Hydrogen (whose reduction potential is 0.0) acts as an oxidizing agent because it accepts an electron donation from the reducing agent lithium (whose reduction potential is -3.04), which causes ...
Note: This Frost diagram for nitrogen is also incomplete as it lacks azide (N − 3, or hydrazoic acid, HN 3), presented here above in the former Frost diagram for nitrogen. The pH dependence is given by the factor −0.059 m / n per pH unit, where m relates to the number of protons in the equation, and n the number of electrons exchanged.
This changes the potential very slowly until the amount of reducing substance becomes very small. A large change in potential will occur then once a small addition of the titrating solution is added, as the final amounts of reducing agent are removed and the potential corresponds solely to the oxidizing agent.