Search results
Results from the WOW.Com Content Network
Aerobic denitrification, or co-respiration, the simultaneous use of both oxygen (O 2) and nitrate (NO − 3) as oxidizing agents, performed by various genera of microorganisms. [1] This process differs from anaerobic denitrification not only in its insensitivity to the presence of oxygen, but also in its higher potential to form nitrous oxide ...
In these areas, nitrate (NO 3 −) or nitrite (NO 2 −) can be used as a substitute terminal electron acceptor instead of oxygen (O 2), a more energetically favourable electron acceptor. Terminal electron acceptor is a compound that gets reduced in the reaction by receiving electrons.
Aerobic respiration requires oxygen (O 2) in order to create ATP. Although carbohydrates , fats and proteins are consumed as reactants , aerobic respiration is the preferred method of pyruvate production in glycolysis , and requires pyruvate be transported the mitochondria in order to be oxidized by the citric acid cycle .
Nitrogen cycle. Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite.Nitrification is an important step in the nitrogen cycle in soil.The process of complete nitrification may occur through separate organisms [1] or entirely within one organism, as in comammox bacteria.
The reaction can be further divided into different half reactions each requiring a specific enzyme. The transformation from nitrate to nitrite is performed by nitrate reductase (Nar) NO 3 − + 2 H + + 2 e − → NO 2 − + H 2 O. Nitrite reductase (Nir) then converts nitrite into nitric oxide 2 NO 2 − + 4 H + + 2 e − → 2 NO + 2 H 2 O
[12] [13] Complete nitrification, the conversion of ammonia to nitrate in a single step known as comammox, has an energy yield (∆G°′) of −349 kJ mol −1 NH 3, while the energy yields for the ammonia-oxidation and nitrite-oxidation steps of the observed two-step reaction are −275 kJ mol −1 NH 3, and −74 kJ mol −1 NO 2 − ...
Whereas in aerobic respiration the oxidant is always oxygen, in anaerobic respiration it varies. Each oxidant produces a different waste product, such as nitrite, succinate, sulfide, methane, and acetate. Anaerobic respiration is correspondingly less efficient than aerobic respiration.
Dissimilatory nitrate reduction to ammonium is a two step process, reducing NO 3 − to NO 2 − then NO 2 − to NH 4 +, though the reaction may begin with NO 2 − directly. [1] Each step is mediated by a different enzyme, the first step of dissimilatory nitrate reduction to ammonium is usually mediated by a periplasmic nitrate reductase.