enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above. The extended Euclidean algorithm implies that 8⋅100 − ...

  3. Exponentiation by squaring - Wikipedia

    en.wikipedia.org/wiki/Exponentiation_by_squaring

    Some variants are commonly referred to as square-and-multiply algorithms or binary exponentiation. These can be of quite general use, for example in modular arithmetic or powering of matrices. For semigroups for which additive notation is commonly used, like elliptic curves used in cryptography , this method is also referred to as double-and-add .

  4. Peter Montgomery (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Peter_Montgomery...

    Peter Lawrence Montgomery (September 25, 1947 – February 18, 2020) was an American mathematician who worked at the System Development Corporation and Microsoft Research.He is best known for his contributions to computational number theory and mathematical aspects of cryptography, including the Montgomery multiplication method for arithmetic in finite fields, the use of Montgomery curves in ...

  5. Lehmer random number generator - Wikipedia

    en.wikipedia.org/wiki/Lehmer_random_number_generator

    where the modulus m is a prime number or a power of a prime number, the multiplier a is an element of high multiplicative order modulo m (e.g., a primitive root modulo n), and the seed X 0 is coprime to m. Other names are multiplicative linear congruential generator (MLCG) [2] and multiplicative congruential generator (MCG).

  6. Barrett reduction - Wikipedia

    en.wikipedia.org/wiki/Barrett_reduction

    However, Montgomery multiplication requires a conversion to and from Montgomery domain which means it is expensive when a few modular multiplications are needed. To perform Barrett multiplication with non-constant operands, one can set a {\displaystyle a} as the product of the operands and set b {\displaystyle b} to 1 {\displaystyle 1} .

  7. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    Congruence modulo m is a congruence relation, meaning that it is an equivalence relation that is compatible with the operations of addition, subtraction, and multiplication. Congruence modulo m is denoted a ≡ b (mod m). The parentheses mean that (mod m) applies to the entire equation, not just to the right-hand side (here, b).

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    The most direct method of calculating a modular exponent is to calculate b e directly, then to take this number modulo m. Consider trying to compute c, given b = 4, e = 13, and m = 497: c ≡ 4 13 (mod 497) One could use a calculator to compute 4 13; this comes out to 67,108,864. Taking this value modulo 497, the answer c is determined to be 445.

  9. Category:Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Category:Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for certain equivalence classes of integers, called congruence classes. Sometimes it is suggestively called 'clock arithmetic', where numbers 'wrap around' after they reach a certain value (the modulus). For example, when the modulus is 12, then any two numbers that leave the same ...