Search results
Results from the WOW.Com Content Network
A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.
First order LTI systems are characterized by the differential equation + = where τ represents the exponential decay constant and V is a function of time t = (). The right-hand side is the forcing function f(t) describing an external driving function of time, which can be regarded as the system input, to which V(t) is the response, or system output.
If the concentration of a reactant remains constant (because it is a catalyst, or because it is in great excess with respect to the other reactants), its concentration can be included in the rate constant, leading to a pseudo–first-order (or occasionally pseudo–second-order) rate equation. For a typical second-order reaction with rate ...
In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]
For example, the first equation contains the concentrations of [Br], [H 2] and [Br 2], which depend on time, as can be seen in their respective equations. To solve the rate equations the steady state approximation can be used. The reactants of this reaction are H 2 and Br 2, the intermediates are H and Br, and the product is HBr. For solving ...
The decay rate, or activity, of a ... The solution to this first-order differential equation is the function: () ... t = T 1/n and substituting into the decay ...
Although these equations were derived to assist with predicting the time course of drug action, [1] the same equation can be used for any substance or quantity that is being produced at a measurable rate and degraded with first-order kinetics. Because the equation applies in many instances of mass balance, it has very broad applicability in ...
If we were to take the reciprocal of this, we would be left with units of time. For this reason, we often state that the lifetime of a species that undergoes first order decay is equal to the reciprocal of k. Consider, now, what would happen if we were to set the time, t, to the reciprocal of the rate constant, k, i.e. t = 1/k. This would yield