Search results
Results from the WOW.Com Content Network
The Einstein field equations (EFE) may be written in the form: [5] [1] + = EFE on the wall of the Rijksmuseum Boerhaave in Leiden, Netherlands. where is the Einstein tensor, is the metric tensor, is the stress–energy tensor, is the cosmological constant and is the Einstein gravitational constant.
The Einstein tensor is built up from the metric tensor and its partial derivatives; thus, given the stress–energy tensor, the Einstein field equations are a system of ten partial differential equations in which the metric tensor can be solved for.
Einstein discussed his idea with mathematician Marcel Grossmann and they concluded that general relativity could be formulated in the context of Riemannian geometry which had been developed in the 1800s. [10] In 1915, he devised the Einstein field equations which relate the curvature of spacetime with the mass, energy, and any momentum within it.
In a similar way, Einstein predicted the gravitational deflection of light: in a gravitational field, light is deflected downward, to the center of the gravitational field. Quantitatively, his results were off by a factor of two; the correct derivation requires a more complete formulation of the theory of general relativity, not just the ...
The metric tensor is a central object in general relativity that describes the local geometry of spacetime (as a result of solving the Einstein field equations). Using the weak-field approximation, the metric tensor can also be thought of as representing the 'gravitational potential'. The metric tensor is often just called 'the metric'.
The Einstein field equations are a system of coupled, nonlinear partial differential equations. In general, this makes them hard to solve. In general, this makes them hard to solve. Nonetheless, several effective techniques for obtaining exact solutions have been established.
Einstein for Beginners, republished as Introducing Einstein, is a 1979 graphic study guide to Albert Einstein and the theory of relativity written by Joseph Schwartz ...
Karl Schwarzschild (German: [kaʁl ˈʃvaʁtsʃɪlt] ⓘ; 9 October 1873 – 11 May 1916) was a German physicist and astronomer.. Schwarzschild provided the first exact solution to the Einstein field equations of general relativity, for the limited case of a single spherical non-rotating mass, which he accomplished in 1915, the same year that Einstein first introduced general relativity.