Search results
Results from the WOW.Com Content Network
The 1% VaR is then $0, because the probability of any loss at all is 1/128 which is less than 1%. They are, however, exposed to a possible loss of $12,700 which can be expressed as the p VaR for any p ≤ 0.78125% (1/128). [3] VaR has four main uses in finance: risk management, financial control, financial reporting and computing regulatory ...
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
If the set is a sample from the whole population, then the unbiased sample variance can be calculated as 1017.538 that is the sum of the squared deviations about the mean of the sample, divided by 11 instead of 12. A function VAR.S in Microsoft Excel gives the unbiased sample variance while VAR.P is for population variance.
A VAR with p lags can always be equivalently rewritten as a VAR with only one lag by appropriately redefining the dependent variable. The transformation amounts to stacking the lags of the VAR(p) variable in the new VAR(1) dependent variable and appending identities to complete the precise number of equations. For example, the VAR(2) model
In statistics, econometrics, and signal processing, an autoregressive (AR) model is a representation of a type of random process; as such, it can be used to describe certain time-varying processes in nature, economics, behavior, etc.
A common case in literature is to define TVaR and average value at risk as the same measure. [1] Under some formulations, it is only equivalent to expected shortfall when the underlying distribution function is continuous at VaR α ( X ) {\displaystyle \operatorname {VaR} _{\alpha }(X)} , the value at risk of level α {\displaystyle \alpha ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way". [1]