Ads
related to: surface area to volume ratio equation examples worksheetgenerationgenius.com has been visited by 100K+ users in the past month
Lesson Plans & Activities · Trusted by Teachers · Kid Tested & Approved · Try It Free for 30 Days
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- Grades 6-8 Math Lessons
Get instant access to hours of fun
standards-based 6-8 videos & more.
- K-8 Math Videos & Lessons
Search results
Results from the WOW.Com Content Network
The surface-area-to-volume ratio has physical dimension inverse length (L −1) and is therefore expressed in units of inverse metre (m-1) or its prefixed unit multiples and submultiples. As an example, a cube with sides of length 1 cm will have a surface area of 6 cm 2 and a volume of 1 cm 3. The surface to volume ratio for this cube is thus
The resulting surface area to volume ratio is therefore 3/r. Thus, if a cell has a radius of 1 μm, the SA:V ratio is 3; whereas if the radius of the cell is instead 10 μm, then the SA:V ratio becomes 0.3. With a cell radius of 100, SA:V ratio is 0.03. Thus, the surface area falls off steeply with increasing volume.
The original cube (1 m sides) has a surface area to volume ratio of 6:1. The larger (2 m sides) cube has a surface area to volume ratio of (24/8) 3:1. As the dimensions increase, the volume will continue to grow faster than the surface area. Thus the square–cube law. This principle applies to all solids. [3]
Graphs of surface area, A against volume, V of all 5 Platonic solids and a sphere by CMG Lee, showing that the surface area decreases for rounder shapes, and the surface-area-to-volume ratio decreases with increasing volume. The dashed lines show that when the volume increases 8 (2³) times, the surface area increases 4 (2²) times.
The ratio of the volume of a sphere to the volume of its circumscribed cylinder is 2:3, as was determined by Archimedes. The principal formulae derived in On the Sphere and Cylinder are those mentioned above: the surface area of the sphere, the volume of the contained ball, and surface area and volume of the cylinder.
A composite cube with a side of 2 has a volume of 8 units 3 but a surface area of only 24 units 2. A rectangular prism two cubes wide, one cube long and four cubes tall has the same volume, but a surface area of 28 units 2. Stacking them in a single column gives 34 units 2.
Ads
related to: surface area to volume ratio equation examples worksheetgenerationgenius.com has been visited by 100K+ users in the past month