Search results
Results from the WOW.Com Content Network
Complex chromosomal rearrangements (CCR) are rarely seen in the general population and are defined as structural chromosomal rearrangements with at least three breakpoints with exchange of genetic material between two or more chromosomes. [5] Some forms of campomelic dysplasia, for example, result from CCRs. [citation needed]
In gene conversion, a section of genetic material is copied from one chromosome to another, without the donating chromosome being changed. Gene conversion occurs at high frequency at the actual site of the recombination event during meiosis. It is a process by which a DNA sequence is copied from one DNA helix (which remains unchanged) to ...
An inversion is a chromosome rearrangement in which a segment of a chromosome becomes inverted within its original position. An inversion occurs when a chromosome undergoes a two breaks within the chromosomal arm, and the segment between the two breaks inserts itself in the opposite direction in the same chromosome arm.
The newly synthesized gene normally contains a novel gene expression or molecular function. The result of the neomorphic mutation is the gene where the mutation occurs has a complete change in function.
The gene targeting method in knockout mice uses mouse embryonic stem cells to deliver artificial genetic material (mostly of therapeutic interest), which represses the target gene of the mouse by the principle of homologous recombination. The mouse thereby acts as a working model to understand the effects of a specific mammalian gene.
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
Gene duplication (or chromosomal duplication or gene amplification) is a major mechanism through which new genetic material is generated during molecular evolution. It can be defined as any duplication of a region of DNA that contains a gene .
The rearrangements of heavy-chains are different from the light chains because DNA undergoes rearrangements of V-D-J gene segments in the heavy chains. These reorganizations of gene segments produce gene sequence from 5 prime to 3 prime ends such as a short leader exon, an intron, a joined VDJ segment, a second intron and several gene segments.