Search results
Results from the WOW.Com Content Network
The slope of phase 0 on the action potential waveform (see figure 2) represents the maximum rate of voltage change of the cardiac action potential and is known as dV/dt max. In pacemaker cells (e.g. sinoatrial node cells ), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels.
The action potential generated at the axon hillock propagates as a wave along the axon. [50] The currents flowing inwards at a point on the axon during an action potential spread out along the axon, and depolarize the adjacent sections of its membrane.
As blood flows into the atria, the pressure will rise, so the blood will initially move passively from the atria into the ventricles. When the action potential triggers the muscles in the atria to contract (atrial systole), the pressure within the atria rises further, pumping blood into the ventricles.
The action potential generated by the SA node passes down the electrical conduction system of the heart, and depolarizes the other potential pacemaker cells (AV node) to initiate action potentials before these other cells have had a chance to generate their own spontaneous action potential, thus they contract and propagate electrical impulses ...
An action potential is a rapid change in membrane potential, produced by the movement of charged atoms . In the absence of stimulation, non-pacemaker cells (including the ventricular and atrial cells ) have a relatively constant membrane potential; this is known as a resting potential .
The threshold potential is the potential an excitable cell membrane, such as a myocyte, must reach in order to induce an action potential. [7] This depolarization is caused by very small net inward currents of calcium ions across the cell membrane, which gives rise to the action potential. [8] [9]
The cardiac conduction system (CCS, also called the electrical conduction system of the heart) [1] transmits the signals generated by the sinoatrial node – the heart's pacemaker, to cause the heart muscle to contract, and pump blood through the body's circulatory system.
The action potential of a ventricular myocyte. In electrocardiography, the ventricular cardiomyocyte membrane potential is about −90 mV at rest, [1] which is close to the potassium reversal potential. When an action potential is generated, the membrane potential rises above this level in five distinct phases. [1]