enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    When the pipe surface's roughness height ε is significant (typically at high Reynolds number), the friction factor departs from the smooth pipe curve, ultimately approaching an asymptotic value ("rough pipe" regime). In this regime, the resistance to flow varies according to the square of the mean flow velocity and is insensitive to Reynolds ...

  4. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    The Hazen–Williams equation is an empirical relationship that relates the flow of water in a pipe with the physical properties of the pipe and the pressure drop caused by friction. It is used in the design of water pipe systems [ 1 ] such as fire sprinkler systems , [ 2 ] water supply networks , and irrigation systems.

  5. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  6. Friction loss - Wikipedia

    en.wikipedia.org/wiki/Friction_loss

    The roughness of the pipe surface influences neither the fluid flow nor the friction loss. In turbulent flow, losses are proportional to the square of the fluid velocity, V 2; here, a layer of chaotic eddies and vortices near the pipe surface, called the viscous sub-layer, forms the transition to the bulk flow. In this domain, the effects of ...

  7. Pipe flow - Wikipedia

    en.wikipedia.org/wiki/Pipe_flow

    These two types of flow are similar in many ways, but differ in one important aspect. Pipe flow does not have a free surface which is found in open-channel flow. Pipe flow, being confined within closed conduit, does not exert direct atmospheric pressure, but does exert hydraulic pressure on the conduit.

  8. Surface finish - Wikipedia

    en.wikipedia.org/wiki/Surface_finish

    Surface finish, also known as surface texture or surface topography, is the nature of a surface as defined by the three characteristics of lay, surface roughness, and waviness. [1] It comprises the small, local deviations of a surface from the perfectly flat ideal (a true plane ).

  9. Pipe network analysis - Wikipedia

    en.wikipedia.org/wiki/Pipe_network_analysis

    To direct water to many users, municipal water supplies often route it through a water supply network. A major part of this network will consist of interconnected pipes. This network creates a special class of problems in hydraulic design, with solution methods typically referred to as pipe network analysis. Water utilities generally make use ...