enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pascal matrix - Wikipedia

    en.wikipedia.org/wiki/Pascal_matrix

    In matrix theory and combinatorics, a Pascal matrix is a matrix (possibly infinite) containing the binomial coefficients as its elements. It is thus an encoding of Pascal's triangle in matrix form. There are three natural ways to achieve this: as a lower-triangular matrix, an upper-triangular matrix, or a symmetric matrix. For example, the 5 × ...

  3. Pascal's triangle - Wikipedia

    en.wikipedia.org/wiki/Pascal's_triangle

    In mathematics, Pascal's triangle is an infinite triangular array of the binomial coefficients which play a crucial role in probability theory, combinatorics, and algebra.In much of the Western world, it is named after the French mathematician Blaise Pascal, although other mathematicians studied it centuries before him in Persia, [1] India, [2] China, Germany, and Italy.

  4. Binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Binomial_coefficient

    As there is zero X n+1 or X −1 in (1 + X) n, one might extend the definition beyond the above boundaries to include () = when either k > n or k < 0. This recursive formula then allows the construction of Pascal's triangle , surrounded by white spaces where the zeros, or the trivial coefficients, would be.

  5. Hockey-stick identity - Wikipedia

    en.wikipedia.org/wiki/Hockey-stick_identity

    Pascal's triangle, rows 0 through 7. The hockey stick identity confirms, for example: for n =6, r =2: 1+3+6+10+15=35. In combinatorics , the hockey-stick identity , [ 1 ] Christmas stocking identity , [ 2 ] boomerang identity , Fermat's identity or Chu's Theorem , [ 3 ] states that if n ≥ r ≥ 0 {\displaystyle n\geq r\geq 0} are integers, then

  6. Trinomial expansion - Wikipedia

    en.wikipedia.org/wiki/Trinomial_expansion

    Layers of Pascal's pyramid derived from coefficients in an upside-down ternary plot of the terms in the expansions of the powers of a trinomial – the number of terms is clearly a triangular number. In mathematics, a trinomial expansion is the expansion of a power of a sum of three terms into monomials. The expansion is given by

  7. Central binomial coefficient - Wikipedia

    en.wikipedia.org/wiki/Central_binomial_coefficient

    The powers of two that divide the central binomial coefficients are given by Gould's sequence, whose nth element is the number of odd integers in row n of Pascal's triangle. Squaring the generating function gives 1 1 − 4 x = ( ∑ n = 0 ∞ ( 2 n n ) x n ) ( ∑ n = 0 ∞ ( 2 n n ) x n ) . {\displaystyle {\frac {1}{1-4x}}=\left(\sum _{n=0 ...

  8. Floyd's triangle - Wikipedia

    en.wikipedia.org/wiki/Floyd's_triangle

    Floyd's triangle is a triangular array of natural numbers used in computer science education. It is named after Robert Floyd . It is defined by filling the rows of the triangle with consecutive numbers, starting with a 1 in the top left corner:

  9. Triangular array - Wikipedia

    en.wikipedia.org/wiki/Triangular_array

    Narayana triangle, counting strings of balanced parentheses with a given number of distinct nestings [7] Pascal's triangle , whose entries are the binomial coefficients [ 8 ] Triangular arrays of integers in which each row is symmetric and begins and ends with 1 are sometimes called generalized Pascal triangles ; examples include Pascal's ...