Search results
Results from the WOW.Com Content Network
A set is Dedekind-finite if it is not Dedekind-infinite (i.e., no such bijection exists). Proposed by Dedekind in 1888, Dedekind-infiniteness was the first definition of "infinite" that did not rely on the definition of the natural numbers. [1] A simple example is , the set of natural numbers.
However, over a Dedekind domain the ideal class group is the only obstruction, and the structure theorem generalizes to finitely generated modules over a Dedekind domain with minor modifications. There is still a unique torsion part, with a torsionfree complement (unique up to isomorphism), but a torsionfree module over a Dedekind domain is no ...
When S is finite, its completion is also finite, and has the smallest number of elements among all finite complete lattices containing S. [ 12 ] The partially ordered set S is join-dense and meet-dense in the Dedekind–MacNeille completion; that is, every element of the completion is a join of some set of elements of S , and is also the meet ...
A Dedekind domain can also be characterized in terms of homological algebra: an integral domain is a Dedekind domain if and only if it is a hereditary ring; that is, every submodule of a projective module over it is projective. Similarly, an integral domain is a Dedekind domain if and only if every divisible module over it is injective. [3]
In more detail, an arithmetic surface (over the Dedekind domain ) is a scheme with a morphism: with the following properties: is integral, normal, excellent, flat and of finite type over and the generic fiber is a non-singular, connected projective curve over () and for other in (),
In the same paper Peirce gave, years before Dedekind, the first purely cardinal definition of a finite set in the sense now known as "Dedekind-finite", and implied by the same stroke an important formal definition of an infinite set (Dedekind-infinite), as a set that can be put into a one-to-one correspondence with one of its proper subsets.
A set X is Dedekind-infinite if there exists a proper subset Y of X with |X| = |Y|, and Dedekind-finite if such a subset does not exist. The finite cardinals are just the natural numbers, in the sense that a set X is finite if and only if |X| = |n| = n for some natural number n. Any other set is infinite.
Many (but not all) of these conjectures generalize the one-dimensional case of well known theorems about the Euler-Riemann-Dedekind zeta function. The scheme need not be flat over Z, in this case it is a scheme of finite type over some F p. This is referred to as the characteristic p case below. In the latter case, many of these conjectures ...