enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Telomeres are regions of repetitive DNA close to the ends and help prevent loss of genes due to this shortening. Shortening of the telomeres is a normal process in somatic cells. This shortens the telomeres of the daughter DNA chromosome. As a result, cells can only divide a certain number of times before the DNA loss prevents further division.

  3. DNA synthesis - Wikipedia

    en.wikipedia.org/wiki/DNA_synthesis

    DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The accurate synthesis of DNA is important in order to avoid mutations to DNA. In humans, mutations could lead to diseases such as cancer so DNA synthesis, and the machinery involved in vivo, has been studied extensively throughout the decades. In the future these ...

  4. Molecular Structure of Nucleic Acids: A Structure for ...

    en.wikipedia.org/wiki/Molecular_Structure_of...

    The two base-pair complementary chains of the DNA molecule allow replication of the genetic instructions. The "specific pairing" is a key feature of the Watson and Crick model of DNA, the pairing of nucleotide subunits. [5] In DNA, the amount of guanine is equal to cytosine and the amount of adenine is equal to thymine. The A:T and C:G pairs ...

  5. DNA - Wikipedia

    en.wikipedia.org/wiki/DNA

    According to another study, when measured in a different solution, the DNA chain measured 22–26 Å (2.2–2.6 nm) wide, and one nucleotide unit measured 3.3 Å (0.33 nm) long. [10] The buoyant density of most DNA is 1.7g/cm 3. [11] DNA does not usually exist as a single strand, but instead as a pair of strands that are held tightly together.

  6. DNA unwinding element - Wikipedia

    en.wikipedia.org/wiki/DNA_unwinding_element

    A DNA unwinding element (DUE or DNAUE) is the initiation site for the opening of the double helix structure of the DNA at the origin of replication for DNA synthesis. [1] It is A-T rich and denatures easily due to its low helical stability, [ 2 ] which allows the single-strand region to be recognized by origin recognition complex .

  7. DNA gyrase - Wikipedia

    en.wikipedia.org/wiki/DNA_gyrase

    DNA gyrase, or simply gyrase, is an enzyme within the class of topoisomerase and is a subclass of Type II topoisomerases [1] that reduces topological strain in an ATP dependent manner while double-stranded DNA is being unwound by elongating RNA-polymerase [2] or by helicase in front of the progressing replication fork.

  8. Nucleotide - Wikipedia

    en.wikipedia.org/wiki/Nucleotide

    This nucleotide contains the five-carbon sugar deoxyribose (at center), a nucleobase called adenine (upper right), and one phosphate group (left). The deoxyribose sugar joined only to the nitrogenous base forms a Deoxyribonucleoside called deoxyadenosine, whereas the whole structure along with the phosphate group is a nucleotide, a constituent of DNA with the name deoxyadenosine monophosphate.

  9. Helicase - Wikipedia

    en.wikipedia.org/wiki/Helicase

    DNA helicases are frequently attracted to regions of DNA damage and are essential for cellular DNA replication, recombination, repair, and transcription. Chemical manipulation of their molecular processes can change the rate at which cancer cells divide, as well as, the efficiency of transactions and cellular homeostasis.