enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radical of a ring - Wikipedia

    en.wikipedia.org/wiki/Radical_of_a_ring

    The Baer radical of a ring is the intersection of the prime ideals of the ring R. Equivalently it is the smallest semiprime ideal in R. The Baer radical is the lower radical of the class of nilpotent rings. Also called the "lower nilradical" (and denoted Nil ∗ R), the "prime radical", and the "Baer-McCoy

  3. Nilradical of a ring - Wikipedia

    en.wikipedia.org/wiki/Nilradical_of_a_ring

    A ring R is called a Jacobson ring if the nilradical and Jacobson radical of R/P coincide for all prime ideals P of R. An Artinian ring is Jacobson, and its nilradical is the maximal nilpotent ideal of the ring. In general, if the nilradical is finitely generated (e.g., the ring is Noetherian), then it is nilpotent.

  4. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    A characteristic similar to that of Jacobson radical and annihilation of simple modules is available for nilradical: nilpotent elements of a ring are precisely those that annihilate all integral domains internal to the ring (that is, of the form / for prime ideals ). This follows from the fact that nilradical is the intersection of all prime ...

  5. Nil ideal - Wikipedia

    en.wikipedia.org/wiki/Nil_ideal

    In mathematics, more specifically ring theory, a left, right or two-sided ideal of a ring is said to be a nil ideal if each of its elements is nilpotent. [1] [2]The nilradical of a commutative ring is an example of a nil ideal; in fact, it is the ideal of the ring maximal with respect to the property of being nil.

  6. Levitzky's theorem - Wikipedia

    en.wikipedia.org/wiki/Levitzky's_theorem

    Proof: In view of the previous lemma, it is sufficient to show that the lower nilradical of R is nilpotent. Because R is right Noetherian, a maximal nilpotent ideal N exists. By maximality of N, the quotient ring R/N has no nonzero nilpotent ideals, so R/N is a semiprime ring. As a result, N contains the lower nilradical of R.

  7. Reduced ring - Wikipedia

    en.wikipedia.org/wiki/Reduced_ring

    The nilpotent elements of a commutative ring R form an ideal of R, called the nilradical of R; therefore a commutative ring is reduced if and only if its nilradical is zero. Moreover, a commutative ring is reduced if and only if the only element contained in all prime ideals is zero. A quotient ring R/I is reduced if and only if I is a radical ...

  8. Jacobson ring - Wikipedia

    en.wikipedia.org/wiki/Jacobson_ring

    Every radical ideal is an intersection of maximal ideals. Every Goldman ideal is maximal. Every quotient ring of R by a prime ideal has a zero Jacobson radical. In every quotient ring, the nilradical is equal to the Jacobson radical. Every finitely generated algebra over R that is a field is finitely generated as an R-module. (Zariski's lemma)

  9. Nilpotent ideal - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_ideal

    In mathematics, more specifically ring theory, an ideal I of a ring R is said to be a nilpotent ideal if there exists a natural number k such that I k = 0. [1] By I k, it is meant the additive subgroup generated by the set of all products of k elements in I. [1]