enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The polynomial x 2 + cx + d, where a + b = c and ab = d, can be factorized into (x + a)(x + b).. In mathematics, factorization (or factorisation, see English spelling differences) or factoring consists of writing a number or another mathematical object as a product of several factors, usually smaller or simpler objects of the same kind.

  3. Pollard's rho algorithm - Wikipedia

    en.wikipedia.org/wiki/Pollard's_rho_algorithm

    A major speed up results as 100 gcd steps are replaced with 99 multiplications modulo ⁠ ⁠ and a single gcd. Occasionally it may cause the algorithm to fail by introducing a repeated factor, for instance when ⁠ n {\displaystyle n} ⁠ is a square .

  4. Integer factorization - Wikipedia

    en.wikipedia.org/wiki/Integer_factorization

    A general-purpose factoring algorithm, also known as a Category 2, Second Category, or Kraitchik family algorithm, [10] has a running time which depends solely on the size of the integer to be factored. This is the type of algorithm used to factor RSA numbers. Most general-purpose factoring algorithms are based on the congruence of squares method.

  5. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    Modern algorithms and computers can quickly factor univariate polynomials of degree more than 1000 having coefficients with thousands of digits. [3] For this purpose, even for factoring over the rational numbers and number fields, a fundamental step is a factorization of a polynomial over a finite field.

  6. Factorization of polynomials over finite fields - Wikipedia

    en.wikipedia.org/wiki/Factorization_of...

    Algorithm: SFF (Square-Free Factorization) Input: A monic polynomial f in F q [x] where q = p m Output: Square-free factorization of f R ← 1 # Make w be the product (without multiplicity) of all factors of f that have # multiplicity not divisible by p c ← gcd(f, f′) w ← f/c # Step 1: Identify all factors in w i ← 1 while w ≠ 1 do y ...

  7. Fermat's factorization method - Wikipedia

    en.wikipedia.org/wiki/Fermat's_factorization_method

    But observe that if N had a subroot factor above =, Fermat's method would have found it already. Trial division would normally try up to 48,432; but after only four Fermat steps, we need only divide up to 47830, to find a factor or prove primality. This all suggests a combined factoring method.

  8. Special number field sieve - Wikipedia

    en.wikipedia.org/wiki/Special_number_field_sieve

    The SNFS works as follows. Let n be the integer we want to factor. As in the rational sieve, the SNFS can be broken into two steps: First, find a large number of multiplicative relations among a factor base of elements of Z/nZ, such that the number of multiplicative relations is larger than the number of elements in the factor base.

  9. Shor's algorithm - Wikipedia

    en.wikipedia.org/wiki/Shor's_algorithm

    Otherwise, go back to step 1. It has been shown that this will be likely to succeed after a few runs. [2] In practice, a single call to the quantum order-finding subroutine is enough to completely factor with very high probability of success if one uses a more advanced reduction. [23]