Search results
Results from the WOW.Com Content Network
The "LS" nomenclature originally came from the Regular Production Option (RPO) code LS1, assigned to the first engine in the Gen III engine series. The LS nickname has since been used to refer generally to all Gen III and IV engines, [14] but that practice can be misleading, since not all engine RPO codes in those generations begin with LS. [15]
The first version of this engine family was a normally aspirated 2.2 L (134 cu in) unit. Developed under the leadership of Chief Engineer – Engine Design and Development Willem Weertman and head of performance tuning Charles "Pete" Hagenbuch, who had worked on most of Chrysler's V-8 engines and the Chrysler Slant-6 engine, [1] it was introduced in the 1981 Dodge Aries, Dodge Omni, Plymouth ...
Since the stroke is significantly longer than the bore, the SOHC 16V (2-valve per cylinder) version of this engine is able to generate a peak torque of 350 lb·ft as low as 2501 rpm. The Willys Jeep L134 and F134 engines were undersquare, with a bore and stroke of 79.4 mm × 111.1 mm (3.13 in × 4.37 in) stroke (bore/stroke ratio = 0.714:1).
The camshaft's duration determines how long the intake/exhaust valve is open for, therefore it is a key factor in the amount of power that an engine produces. A longer duration can increase power at high engine speeds (RPM), however this can come with the trade-off of less torque being produced at low RPM. [16] [17] [18]
In 1988, the 4.0 received higher flowing fuel injectors, raising output to 177 hp (132 kW; 179 PS) and 224 lb⋅ft (304 N⋅m) — more power than some configurations of the Ford 302, Chevrolet 305, and Chrysler 318 V8 engines, and more than any of the Japanese 6-cylinder truck engines, but with comparable or superior fuel economy.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In most piston engines, the camshaft(s) are mechanically connected to the crankshaft. The crankshaft drives the camshaft (via a timing belt, timing chain or gears), which in turn actuates the intake and exhaust valves. [1] These valves allow the engine to inhale air (or an air/fuel mixture) and exhale the exhaust gasses. [2]
The first CamPro engine used in older Gen-2 models.. The first CamPro engine made its debut in 2004 fitted to the newly released Gen•2 models. It was codenamed S4PH and was a DOHC 16-valve 1.6-litre engine that produced 110 bhp (82 kW) of power at 6,000 rpm and 148 N⋅m (109 ft⋅lbf) of torque at 4,000 rpm.