enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Combination - Wikipedia

    en.wikipedia.org/wiki/Combination

    In mathematics, a combination is a selection of items from a set that has distinct members, such that the order of selection does not matter (unlike permutations).For example, given three fruits, say an apple, an orange and a pear, there are three combinations of two that can be drawn from this set: an apple and a pear; an apple and an orange; or a pear and an orange.

  3. Combinatorial number system - Wikipedia

    en.wikipedia.org/wiki/Combinatorial_number_system

    The number associated in the combinatorial number system of degree k to a k-combination C is the number of k-combinations strictly less than C in the given ordering. This number can be computed from C = {c k, ..., c 2, c 1} with c k > ... > c 2 > c 1 as follows.

  4. Shannon number - Wikipedia

    en.wikipedia.org/wiki/Shannon_number

    Claude Shannon. The Shannon number, named after the American mathematician Claude Shannon, is a conservative lower bound of the game-tree complexity of chess of 10 120, based on an average of about 10 3 possibilities for a pair of moves consisting of a move for White followed by a move for Black, and a typical game lasting about 40 such pairs of moves.

  5. Stars and bars (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Stars_and_bars_(combinatorics)

    For any pair of positive integers n and k, the number of k-tuples of positive integers whose sum is n is equal to the number of (k − 1)-element subsets of a set with n − 1 elements. For example, if n = 10 and k = 4, the theorem gives the number of solutions to x 1 + x 2 + x 3 + x 4 = 10 (with x 1, x 2, x 3, x 4 > 0) as the binomial coefficient

  6. Composition (combinatorics) - Wikipedia

    en.wikipedia.org/wiki/Composition_(combinatorics)

    Note that the ancient Sanskrit sages discovered many years before Fibonacci that the number of compositions of any natural number n as the sum of 1's and 2's is the nth Fibonacci number! Note that these are not general compositions as defined above because the numbers are restricted to 1's and 2's only. 1=1 (1) 2=1+1=2 (2) 3=1+1+1=1+2=2+1 (3)

  7. Lottery mathematics - Wikipedia

    en.wikipedia.org/wiki/Lottery_mathematics

    It is a hard (and often open) problem to calculate the minimum number of tickets one needs to purchase to guarantee that at least one of these tickets matches at least 2 numbers. In the 5-from-90 lotto, the minimum number of tickets that can guarantee a ticket with at least 2 matches is 100. [3]

  8. Combinations and permutations - Wikipedia

    en.wikipedia.org/wiki/Combinations_and_permutations

    Combinations and permutations in the mathematical sense are described in several articles. Described together, in-depth: Twelvefold way; Explained separately in a more accessible way: Combination; Permutation; For meanings outside of mathematics, please see both words’ disambiguation pages: Combination (disambiguation) Permutation ...

  9. Mathematics of Sudoku - Wikipedia

    en.wikipedia.org/wiki/Mathematics_of_Sudoku

    For small values of N the number of ways to tile the square (excluding symmetries) has been computed (sequence A172477 in the OEIS). [10] For N ≥ 4 some of these tilings are not compatible with any Latin square; i.e. all Sudoku puzzles on such a tiling have no solution.