Search results
Results from the WOW.Com Content Network
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
Given an integer a and a non-zero integer d, it can be shown that there exist unique integers q and r, such that a = qd + r and 0 ≤ r < | d |. The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see Division algorithm.)
In fact, x ≡ b m n −1 m + a n m −1 n (mod mn) where m n −1 is the inverse of m modulo n and n m −1 is the inverse of n modulo m. Lagrange's theorem: If p is prime and f (x) = a 0 x d + ... + a d is a polynomial with integer coefficients such that p is not a divisor of a 0, then the congruence f (x) ≡ 0 (mod p) has at most d non ...
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
where r −2 (x) = a(x) and r −1 (x) = b(x). Each quotient polynomial is chosen such that each remainder is either zero or has a degree that is smaller than the degree of its predecessor: deg[r k (x)] < deg[r k−1 (x)]. Since the degree is a nonnegative integer, and since it decreases with every step, the Euclidean algorithm concludes in a ...
In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the dividend) by another (the divisor), in a way that produces an integer quotient and a natural number remainder strictly smaller than the absolute value of the divisor. A fundamental property is that the quotient and the remainder ...
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values.
The long division may begin with a non-zero remainder. The remainder is generally computed using an -bit shift register holding the current remainder, while message bits are added and reduction modulo () is performed. Normal division initializes the shift register to zero, but it may instead be initialized to a non-zero value.