Search results
Results from the WOW.Com Content Network
The less hindered faces of the enone and alkene react. [9] Intramolecular enone–alkene cycloaddition may give either "bent" or "straight" products depending on the reaction regioselectivity. When the tether between the enone and alkene is two atoms long, bent products predominate due to the rapid formation of five-membered rings. [10]
In general, if more than one alkene can be formed during dehalogenation by an elimination reaction, the more stable alkene is the major product. There are two types of elimination reactions, E1 and E2. An E2 reaction is a One step mechanism in which carbon-hydrogen and carbon-halogen bonds break to form a double bond. C=C Pi bond.
a Diels-Alder reaction. Alkenes add to dienes to give cyclohexenes. This conversion is an example of a Diels-Alder reaction. Such reaction proceed with retention of stereochemistry. The rates are sensitive to electron-withdrawing or electron-donating substituents. When irradiated by UV-light, alkenes dimerize to give cyclobutanes. [20]
In organic chemistry, the Doering–LaFlamme allene synthesis is a reaction of alkenes that converts them to allenes by insertion of a carbon atom. [1] This name reaction is named for William von Eggers Doering and a co-worker, who first reported it.
The McMurry reaction of benzophenone. The McMurry reaction is an organic reaction in which two ketone or aldehyde groups are coupled to form an alkene using a titanium chloride compound such as titanium(III) chloride and a reducing agent. The reaction is named after its co-discoverer, John E. McMurry.
Baeyer–Drewson indigo synthesis; Baeyer–Villiger oxidation, Baeyer–Villiger rearrangement [12]; Bakeland process (Bakelite) Baker–Venkataraman rearrangement, Baker–Venkataraman transformation [13] [14] [15] [16]
The Woodward cis-hydroxylation (also known as the Woodward reaction) is the chemical reaction of alkenes with iodine and silver acetate in wet acetic acid to form cis-diols. [1] [2] (conversion of olefin into cis-diol) The reaction is named after its discoverer, Robert Burns Woodward. The Woodward cis-hydroxylation
Cyclization reactions, or intramolecular addition reactions, can be used to form cycloalkenes. These reactions primarily form cyclopentenones, a cycloalkene that contains two functional groups: the cyclopentene and a ketone group. [12] However, other cycloalkenes, such as Cyclooctatetraene, can be formed as a result of this reaction. [11]