Search results
Results from the WOW.Com Content Network
Reaction stoichiometry describes the 2:1:2 ratio of hydrogen, oxygen, and water molecules in the above equation. The molar ratio allows for conversion between moles of one substance and moles of another. For example, in the reaction 2 CH 3 OH + 3 O 2 → 2 CO 2 + 4 H 2 O. the amount of water that will be produced by the combustion of 0.27 moles ...
In equilibrium, the reaction quotient is constant over time and is equal to the equilibrium constant. A general chemical reaction in which α moles of a reactant A and β moles of a reactant B react to give ρ moles of a product R and σ moles of a product S can be written as
RMO = Ratio of the # of moles of oxygen to # of moles of oxidizable compound in their reaction to CO 2, water, and ammonia. For example, if a sample has 500 Wppm (Weight Parts per Million) of phenol: C 6 H 5 OH + 7O 2 → 6CO 2 + 3H 2 O COD = (500/94)·7·16*2 = 1192 Wppm
Conversion and its related terms yield and selectivity are important terms in chemical reaction engineering.They are described as ratios of how much of a reactant has reacted (X — conversion, normally between zero and one), how much of a desired product was formed (Y — yield, normally also between zero and one) and how much desired product was formed in ratio to the undesired product(s) (S ...
In physical chemistry and chemical engineering, extent of reaction is a quantity that measures the extent to which the reaction has proceeded. Often, it refers specifically to the value of the extent of reaction when equilibrium has been reached. It is usually denoted by the Greek letter ξ.
A reaction can also have an undefined reaction order with respect to a reactant if the rate is not simply proportional to some power of the concentration of that reactant; for example, one cannot talk about reaction order in the rate equation for a bimolecular reaction between adsorbed molecules:
the reaction results in the change of the number of moles of gas in the system. In the example reaction above, the number of moles changes from 4 to 2, and an increase of pressure by system compression will result in appreciably more ammonia in the equilibrium mixture. In the general case of a gaseous reaction: α A + β B ⇌ σ S + τ T
This means that 15 moles of molecular oxygen (O 2) is required to react with 2 moles of benzene (C 6 H 6) The amount of oxygen required for other quantities of benzene can be calculated using cross-multiplication (the rule of three). For example, if 1.5 mol C 6 H 6 is present, 11.25 mol O 2 is required: