Search results
Results from the WOW.Com Content Network
The group velocity is positive (i.e., the envelope of the wave moves rightward), while the phase velocity is negative (i.e., the peaks and troughs move leftward). The group velocity of a wave is the velocity with which the overall envelope shape of the wave's amplitudes —known as the modulation or envelope of the wave—propagates through space.
Propagation of a wave packet demonstrating a phase velocity greater than the group velocity. This shows a wave with the group velocity and phase velocity going in different directions. The group velocity is positive, while the phase velocity is negative. [1] The phase velocity of a wave is the rate at which the wave propagates in any medium.
The group velocity ∂Ω / ∂k of capillary waves – dominated by surface tension effects – is greater than the phase velocity Ω / k . This is opposite to the situation of surface gravity waves (with surface tension negligible compared to the effects of gravity) where the phase velocity exceeds the group velocity. [13]
It is possible to calculate the group velocity from the refractive-index curve n(ω) or more directly from the wavenumber k = ωn/c, where ω is the radian frequency ω = 2πf. Whereas one expression for the phase velocity is v p = ω/k, the group velocity can be expressed using the derivative: v g = dω/dk. Or in terms of the phase velocity v p,
The phase velocity c p (blue) and group velocity c g (red) as a function of water depth h for surface gravity waves of constant frequency, according to Airy wave theory. Quantities have been made dimensionless using the gravitational acceleration g and period T, with the deep-water wavelength given by L 0 = gT 2 /(2π) and the deep-water phase ...
Ideas related to wave packets – modulation, carrier waves, phase velocity, and group velocity – date from the mid-1800s. The idea of a group velocity distinct from a wave's phase velocity was first proposed by W.R. Hamilton in 1839, and the first full treatment was by Rayleigh in his "Theory of Sound" in 1877.
Animation: phase and group velocity of electrons This animation portrays the de Broglie phase and group velocities (in slow motion) of three free electrons traveling over a field 0.4 ångströms in width. The momentum per unit mass (proper velocity) of the middle electron is lightspeed, so that its group velocity is 0.707 c. The top electron ...
Inherent in these equations is a relationship between the angular frequency ω and the wave number k. Numerical methods are used to find the phase velocity c p = fλ = ω/k, and the group velocity c g = dω/dk, as functions of d/λ or fd. c l and c t are the longitudinal wave and shear wave velocities respectively.