Search results
Results from the WOW.Com Content Network
Deterministic algorithms are by far the most studied and familiar kind of algorithm, as well as one of the most practical, since they can be run on real machines efficiently. Formally, a deterministic algorithm computes a mathematical function ; a function has a unique value for any input in its domain , and the algorithm is a process that ...
CAA computes state values vertically and actions horizontally (the "crossbar"). Demonstration graphs showing delayed reinforcement learning contained states (desirable, undesirable, and neutral states), which were computed by the state evaluation function. This learning system was a forerunner of the Q-learning algorithm. [19]
In other words, any problem in EXPTIME is solvable by a deterministic Turing machine in O(2 p(n)) time, where p(n) is a polynomial function of n. A decision problem is EXPTIME-complete if it is in EXPTIME, and every problem in EXPTIME has a polynomial-time many-one reduction to it. A number of problems are known to be EXPTIME-complete.
Similar to reinforcement learning, a learning automata algorithm also has the advantage of solving the problem when probability or rewards are unknown. The difference between learning automata and Q-learning is that the former technique omits the memory of Q-values, but updates the action probability directly to find the learning result.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]
The systems studied in chaos theory are deterministic. If the initial state were known exactly, then the future state of such a system could theoretically be predicted. However, in practice, knowledge about the future state is limited by the precision with which the initial state can be measured, and chaotic systems are characterized by a strong dependence on the initial condit
For example, XCS, [11] the best known and best studied LCS algorithm, is Michigan-style, was designed for reinforcement learning but can also perform supervised learning, applies incremental learning that can be either online or offline, applies accuracy-based fitness, and seeks to generate a complete action mapping.
To abandon this assumption would require the construction of a non-local hidden variable theory. Therefore, it is possible to augment quantum mechanics with non-local hidden variables to achieve a deterministic theory that is in agreement with experiment. [91] An example is the Bohm interpretation of quantum mechanics. Bohm's Interpretation ...