enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    A closed feasible region of a linear programming problem with three variables is a convex polyhedron. In mathematical optimization and computer science , a feasible region, feasible set, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints ...

  3. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    A closed feasible region of a problem with three variables is a convex polyhedron. The surfaces giving a fixed value of the objective function are planes (not shown). The linear programming problem is to find a point on the polyhedron that is on the plane with the highest possible value.

  4. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    In the theory of linear programming, a basic feasible solution (BFS) is a solution with a minimal set of non-zero variables. Geometrically, each BFS corresponds to a vertex of the polyhedron of feasible solutions. If there exists an optimal solution, then there exists an optimal BFS.

  5. Interior-point method - Wikipedia

    en.wikipedia.org/wiki/Interior-point_method

    An interior point method was discovered by Soviet mathematician I. I. Dikin in 1967. [1] The method was reinvented in the U.S. in the mid-1980s. In 1984, Narendra Karmarkar developed a method for linear programming called Karmarkar's algorithm, [2] which runs in provably polynomial time (() operations on L-bit numbers, where n is the number of variables and constants), and is also very ...

  6. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm is an algorithm introduced by Narendra Karmarkar in 1984 for solving linear programming problems. It was the first reasonably efficient algorithm that solves these problems in polynomial time. The ellipsoid method is also polynomial time but proved to be inefficient in practice.

  7. Cutting-plane method - Wikipedia

    en.wikipedia.org/wiki/Cutting-plane_method

    The theory of Linear Programming dictates that under mild assumptions (if the linear program has an optimal solution, and if the feasible region does not contain a line), one can always find an extreme point or a corner point that is optimal. The obtained optimum is tested for being an integer solution.

  8. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The possible results of Phase I are either that a basic feasible solution is found or that the feasible region is empty. In the latter case the linear program is called infeasible . In the second step, Phase II, the simplex algorithm is applied using the basic feasible solution found in Phase I as a starting point.

  9. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    This is not convex, and in general much more difficult than regular linear programming. Quadratic programming allows the objective function to have quadratic terms, while the feasible set must be specified with linear equalities and inequalities. For specific forms of the quadratic term, this is a type of convex programming.