enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Variance - Wikipedia

    en.wikipedia.org/wiki/Variance

    In probability theory and statistics, variance is the expected value of the squared deviation from the mean of a random variable. The standard deviation (SD) is obtained as the square root of the variance.

  3. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    The expectation of a random variable plays an important role in a variety of contexts. In statistics, where one seeks estimates for unknown parameters based on available data gained from samples, the sample mean serves as an estimate for the expectation, and is itself a random

  4. Variance function - Wikipedia

    en.wikipedia.org/wiki/Variance_function

    In statistics, the variance function is a smooth function that depicts the variance of a random quantity as a function of its mean.The variance function is a measure of heteroscedasticity and plays a large role in many settings of statistical modelling.

  5. Law of total variance - Wikipedia

    en.wikipedia.org/wiki/Law_of_total_variance

    In probability theory, the law of total variance [1] or variance decomposition formula or conditional variance formulas or law of iterated variances also known as Eve's law, [2] states that if and are random variables on the same probability space, and the variance of is finite, then

  6. Conditional variance - Wikipedia

    en.wikipedia.org/wiki/Conditional_variance

    Recall that variance is the expected squared deviation between a random variable (say, Y) and its expected value. The expected value can be thought of as a reasonable prediction of the outcomes of the random experiment (in particular, the expected value is the best constant prediction when predictions are assessed by expected squared prediction ...

  7. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    A random variable with a Gaussian distribution is said to be normally distributed, and is called a normal deviate. Normal distributions are important in statistics and are often used in the natural and social sciences to represent real-valued random variables whose distributions are not known.

  8. Continuous uniform distribution - Wikipedia

    en.wikipedia.org/wiki/Continuous_uniform...

    For a random variable following the continuous uniform distribution, the expected value is = +, and the variance is = (). For the special case a = − b , {\displaystyle a=-b,} the probability density function of the continuous uniform distribution is:

  9. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.