enow.com Web Search

  1. Ad

    related to: stokes theorem triangle with vertices and angles examples problems pdf

Search results

  1. Results from the WOW.Com Content Network
  2. Generalized Stokes theorem - Wikipedia

    en.wikipedia.org/wiki/Generalized_Stokes_theorem

    In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or , and the divergence theorem is the case of a volume in . [2] Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

  3. Stokes' theorem - Wikipedia

    en.wikipedia.org/wiki/Stokes'_theorem

    An illustration of Stokes' theorem, with surface Σ, its boundary ∂Σ and the normal vector n.The direction of positive circulation of the bounding contour ∂Σ, and the direction n of positive flux through the surface Σ, are related by a right-hand-rule (i.e., the right hand the fingers circulate along ∂Σ and the thumb is directed along n).

  4. Discrete exterior calculus - Wikipedia

    en.wikipedia.org/wiki/Discrete_exterior_calculus

    In this notation, Stokes' theorem reads as = . In finite element analysis, the first stage is often the approximation of the domain of interest by a triangulation, T. For example, a curve would be approximated as a union of straight line segments; a surface would be approximated by a union of triangles, whose edges are straight line segments ...

  5. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    This is considered one of the simplest unsteady problems that has an exact solution for the Navier–Stokes equations. [1] [2] In turbulent flow, this is still named a Stokes boundary layer, but now one has to rely on experiments, numerical simulations or approximate methods in order to obtain useful information on the flow.

  6. Circulation (physics) - Wikipedia

    en.wikipedia.org/wiki/Circulation_(physics)

    Here, θ is the angle between the vectors V and dl. The circulation Γ of a vector field V around a closed curve C is the line integral: [3] [4] =. In a conservative vector field this integral evaluates to zero for every closed curve. That means that a line integral between any two points in the field is independent of the path taken.

  7. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    The reason is that the value of sine for the angle of the triangle does not uniquely determine this angle. For example, if sin β = 0.5, the angle β can equal either 30° or 150°. Using the law of cosines avoids this problem: within the interval from 0° to 180° the cosine value unambiguously determines its angle.

  8. Soddy circles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Soddy_circles_of_a_triangle

    When the outer Soddy circle has negative curvature, its center is the isoperimetric point of the triangle: the three triangles formed by this center and two vertices of the starting triangle all have the same perimeter. [4] Triangles whose outer Soddy circle degenerates to a straight line with curvature zero have been called "Soddyian triangles ...

  9. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles. According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.

  1. Ad

    related to: stokes theorem triangle with vertices and angles examples problems pdf