Search results
Results from the WOW.Com Content Network
In the figure, the fraction 1/9000 is displayed in Excel. Although this number has a decimal representation that is an infinite string of ones, Excel displays only the leading 15 figures. In the second line, the number one is added to the fraction, and again Excel displays only 15 figures. In the third line, one is subtracted from the sum using ...
Infix notation may also be distinguished from function notation, where the name of a function suggests a particular operation, and its arguments are the operands. An example of such a function notation would be S(1, 3) in which the function S denotes addition ("sum"): S (1, 3) = 1 + 3 = 4 .
± (plus–minus sign) 1. Denotes either a plus sign or a minus sign. 2. Denotes the range of values that a measured quantity may have; for example, 10 ± 2 denotes an unknown value that lies between 8 and 12. ∓ (minus-plus sign) Used paired with ±, denotes the opposite sign; that is, + if ± is –, and – if ± is +.
Addition has several important properties. It is commutative, meaning that the order of the operands does not matter, and it is associative, meaning that when one adds more than two numbers, the order in which addition is performed does not matter. Repeated addition of 1 is the same as counting (see Successor function).
li – logarithmic integral function or linearly independent. lim – limit of a sequence, or of a function. lim inf – limit inferior. lim sup – limit superior. LLN – law of large numbers. ln – natural logarithm, log e. lnp1 – natural logarithm plus 1 function. ln1p – natural logarithm plus 1 function. log – logarithm.
Sigma function: Sums of powers of divisors of a given natural number. Euler's totient function: Number of numbers coprime to (and not bigger than) a given one. Prime-counting function: Number of primes less than or equal to a given number. Partition function: Order-independent count of ways to write a given positive integer as a sum of positive ...
The equals sign, used to represent equality symbolically in an equation. In mathematics, equality is a relationship between two quantities or expressions, stating that they have the same value, or represent the same mathematical object. [1] [2] Equality between A and B is written A = B, and pronounced "A equals B".
For example, if one takes the function () that is equal to zero everywhere except at = where () =, then the supremum of the function equals one. However, its essential supremum is zero since (under the Lebesgue measure ) one can ignore what the function does at the single point where f {\displaystyle f} is peculiar.