enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Percentage - Wikipedia

    en.wikipedia.org/wiki/Percentage

    In general, if an increase of x percent is followed by a decrease of x percent, and the initial amount was p, the final amount is p (1 + 0.01 x)(1 − 0.01 x) = p (1 − (0.01 x) 2); hence the net change is an overall decrease by x percent of x percent (the square of the original percent change when expressed as a decimal number).

  3. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    An example of a fraction that cannot be represented by a decimal expression (with a finite number of digits) is ⁠ 1 / 3 ⁠, 3 not being a power of 10. More generally, a decimal with n digits after the separator (a point or comma) represents the fraction with denominator 10 n , whose numerator is the integer obtained by removing the separator.

  4. Benford's law - Wikipedia

    en.wikipedia.org/wiki/Benford's_law

    Thus, the probability that a number starts with the digits 3, 1, 4 (some examples are 3.14, 3.142, π, 314280.7, and 0.00314005) is log 10 (1 + 1/314) ≈ 0.00138, as in the box with the log-log graph on the right. This result can be used to find the probability that a particular digit occurs at a given position within a number.

  5. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = ⁠ 1585 / 1000 ⁠); it may also be written as a ratio of the form ⁠ k / 2 n ·5 m ⁠ (e.g. 1.585 = ⁠ 317 / 2 3 ·5 2 ⁠). However, every number with a terminating decimal representation also ...

  6. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.

  7. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In statistics, the 68–95–99.7 rule, also known as the empirical rule, and sometimes abbreviated 3sr or 3 σ, is a shorthand used to remember the percentage of values that lie within an interval estimate in a normal distribution: approximately 68%, 95%, and 99.7% of the values lie within one, two, and three standard deviations of the mean ...

  8. Wikipedia:Manual of Style/Dates and numbers - Wikipedia

    en.wikipedia.org/.../Dates_and_numbers

    Left of the decimal point, five or more digits are grouped into threes separated by commas (e.g. 12,200; 255,200 km; 8,274,527th; 1 ⁄ 86,400). Numbers with exactly four digits left of the decimal point may optionally be grouped (either 1,250 or 1250), consistently within any given article.

  9. 3 - Wikipedia

    en.wikipedia.org/wiki/3

    It is the first unique prime, such that the period length value of 1 of the decimal expansion of its reciprocal, 0.333..., is unique. 3 is a twin prime with 5, and a cousin prime with 7, and the only known number such that ! − 1 and ! + 1 are prime, as well as the only prime number such that − 1 yields another prime number, 2.