Search results
Results from the WOW.Com Content Network
In the Gaṇita-sāra-saṅgraha (GSS), the second section of the chapter on arithmetic is named kalā-savarṇa-vyavahāra (lit. "the operation of the reduction of fractions"). In this, the bhāgajāti section (verses 55–98) gives rules for the following: [14] To express 1 as the sum of n unit fractions (GSS kalāsavarṇa 75, examples in 76 ...
Decimal fractions can also be expressed using scientific notation with negative exponents, such as 6.023 × 10 −7, a convenient alternative to the unwieldy 0.0000006023. The 10 −7 represents a denominator of 10 7. Dividing by 10 7 moves the decimal point seven places to the left.
Every non-empty subset of the real numbers which is bounded from above has a least upper bound.. In mathematics, the least-upper-bound property (sometimes called completeness, supremum property or l.u.b. property) [1] is a fundamental property of the real numbers.
The notion of irreducible fraction generalizes to the field of fractions of any unique factorization domain: any element of such a field can be written as a fraction in which denominator and numerator are coprime, by dividing both by their greatest common divisor. [7] This applies notably to rational expressions over a field. The irreducible ...
The decimal number system in use today [3] was first recorded in Indian mathematics. [4] Indian mathematicians made early contributions to the study of the concept of zero as a number, [5] negative numbers, [6] arithmetic, and algebra. [7]
The Hindu–Arabic system is designed for positional notation in a decimal system. In a more developed form, positional notation also uses a decimal marker (at first a mark over the ones digit but now more commonly a decimal point or a decimal comma which separates the ones place from the tenths place), and also a symbol for "these digits recur ad infinitum".
The Rhind Mathematical Papyrus. An Egyptian fraction is a finite sum of distinct unit fractions, such as + +. That is, each fraction in the expression has a numerator equal to 1 and a denominator that is a positive integer, and all the denominators differ from each other.
The solution = is in fact a valid solution to the original equation; but the other solution, =, has disappeared. The problem is that we divided both sides by x {\displaystyle x} , which involves the indeterminate operation of dividing by zero when x = 0. {\displaystyle x=0.}