Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
The period T is the time taken to complete one cycle of an oscillation or rotation. The frequency and the period are related by the equation [4] =. The term temporal frequency is used to emphasise that the frequency is characterised by the number of occurrences of a repeating event per unit time.
Frequency: f: Number of (periodic) occurrences per unit time hertz (Hz = s −1) T −1: scalar Half-life: t 1/2: Time for a quantity to decay to half its initial value s T: Heat: Q: Thermal energy: joule (J) L 2 M T −2: Heat capacity: C p: Energy per unit temperature change J/K L 2 M T −2 Θ −1: extensive Heat flux density: ϕ Q: Heat ...
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
This relationship leaves Strouhal dimensionless, although a dimensionless approximation is often used for C 3, resulting in units of pulses/volume (same as K-factor). This relationship between flow and frequency can also be found in the aeronautical field. Considering pulsating methane-air coflow jet diffusion flames, we get
In physics, natural unit systems are measurement systems for which selected physical constants have been set to 1 through nondimensionalization of physical units.For example, the speed of light c may be set to 1, and it may then be omitted, equating mass and energy directly E = m rather than using c as a conversion factor in the typical mass–energy equivalence equation E = mc 2.
A meaningful test on the time-variation of G would require comparison with a non-gravitational force to obtain a dimensionless quantity, e.g. through the ratio of the gravitational force to the electrostatic force between two electrons, which in turn is related to the dimensionless fine-structure constant.
The Deborah number (De) is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It quantifies the observation that given enough time even a solid-like material might flow, or a fluid-like material can act solid when it is deformed rapidly enough.