enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acid dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Acid_dissociation_constant

    Conversely, when pH = pK a, the concentration of HA is equal to the concentration of A −. The buffer region extends over the approximate range pK a ± 2. Buffering is weak outside the range pK a ± 1. At pHpK a − 2 the substance is said to be fully protonated and at pHpK a + 2 it is fully dissociated (deprotonated).

  3. Protein pKa calculations - Wikipedia

    en.wikipedia.org/wiki/Protein_pKa_calculations

    The pH-dependence of the activity displayed by enzymes and the pH-dependence of protein stability, for example, are properties that are determined by the pK a values of amino acid side chains. The p K a values of an amino acid side chain in solution is typically inferred from the p K a values of model compounds (compounds that are similar to ...

  4. Henderson–Hasselbalch equation - Wikipedia

    en.wikipedia.org/wiki/Henderson–Hasselbalch...

    The Henderson–Hasselbalch equation can be used to model these equilibria. It is important to maintain this pH of 7.4 to ensure enzymes are able to work optimally. [10] Life threatening Acidosis (a low blood pH resulting in nausea, headaches, and even coma, and convulsions) is due to a lack of functioning of enzymes at a low pH. [10]

  5. Dissociation constant - Wikipedia

    en.wikipedia.org/wiki/Dissociation_constant

    The dissociation constant for a particular ligand–protein interaction can change with solution conditions (e.g., temperature, pH and salt concentration). The effect of different solution conditions is to effectively modify the strength of any intermolecular interactions holding a particular ligand–protein complex together

  6. Ion speciation - Wikipedia

    en.wikipedia.org/wiki/Ion_speciation

    The pH of a solution of a monoprotic weak acid can be expressed in terms of the extent of dissociation. After rearranging the expression defining the acid dissociation constant, and putting pH = −log 10 [H +], one obtains pH = pK a – log ( [AH]/[A −] ) This is a form of the Henderson-Hasselbalch equation. It can be deduced from this ...

  7. Buffer solution - Wikipedia

    en.wikipedia.org/wiki/Buffer_solution

    The smaller the difference, the more the overlap. In the case of citric acid, the overlap is extensive and solutions of citric acid are buffered over the whole range of pH 2.5 to 7.5. Calculation of the pH with a polyprotic acid requires a speciation calculation to be performed. In the case of citric acid, this entails the solution of the two ...

  8. Isohydric principle - Wikipedia

    en.wikipedia.org/wiki/Isohydric_principle

    Secondly, the pH (at equilibrium) can be calculated from an individual buffer system regardless of other buffers present. That is, in vivo, knowing the concentration of pCO 2 (weak acid) and bicarbonate (conjugate base) and the pKa of that buffer system, the pH can be calculated regardless of the presence of other contributing buffers.

  9. Ion trapping - Wikipedia

    en.wikipedia.org/wiki/Ion_trapping

    The converse is true in a basic medium. For example, Naproxen is a non-steroidal anti-inflammatory drug that is a weak acid (its pKa value is 5.0). The gastric juice has a pH of 2.0. It is a three-fold difference (due to log scale) between its pH and its pKa; therefore there is a 1000× difference between the charged and uncharged concentrations.