Search results
Results from the WOW.Com Content Network
By an argument similar to the above, one finds that the supremum of a set with upper bounds is the infimum of the set of upper bounds. Consequently, bounded completeness is equivalent to the existence of all non-empty infima. A poset is a complete lattice if and only if it is a cpo and a join-semilattice.
In mathematics, a supermodular function is a function on a lattice that, informally, has the property of being characterized by "increasing differences." Seen from the point of set functions, this can also be viewed as a relationship of "increasing returns", where adding more elements to a subset increases its valuation.
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options.Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting, which in general does not exist for the BOPM [1].
such that one of these properties suffices to define distributivity for lattices. Typical examples of distributive lattice are totally ordered sets, Boolean algebras, and Heyting algebras. Every finite distributive lattice is isomorphic to a lattice of sets, ordered by inclusion (Birkhoff's representation theorem).
A pre-ordered vector lattice homomorphism between two Riesz spaces is called a vector lattice homomorphism; if it is also bijective, then it is called a vector lattice isomorphism. If u {\displaystyle u} is a non-zero linear functional on a vector lattice X {\displaystyle X} with positive cone C {\displaystyle C} then the following are equivalent:
Goodhart's law is an adage often stated as, "When a measure becomes a target, it ceases to be a good measure". [1] It is named after British economist Charles Goodhart, who is credited with expressing the core idea of the adage in a 1975 article on monetary policy in the United Kingdom: [2]
In quantitative finance, a lattice model [1] is a numerical approach to the valuation of derivatives in situations requiring a discrete time model. For dividend paying equity options , a typical application would correspond to the pricing of an American-style option , where a decision to exercise is allowed at the closing of any calendar day up ...