Search results
Results from the WOW.Com Content Network
Rays emanating from 0 in the z-plane are mapped to horizontal lines in the w-plane. Each circle and ray in the z-plane as above meet at a right angle. Their images under Log are a vertical segment and a horizontal line (respectively) in the w-plane, and these too meet at a right angle. This is an illustration of the conformal property of Log.
Logarithmic number systems have been independently invented and published at least three times as an alternative to fixed-point and floating-point number systems. [1]Nicholas Kingsbury and Peter Rayner introduced "logarithmic arithmetic" for digital signal processing (DSP) in 1971.
Because log(x) is the sum of the terms of the form log(1 + 2 −k) corresponding to those k for which the factor 1 + 2 −k was included in the product P, log(x) may be computed by simple addition, using a table of log(1 + 2 −k) for all k. Any base may be used for the logarithm table.
A log–log plot of y = x (blue), y = x 2 (green), and y = x 3 (red). Note the logarithmic scale markings on each of the axes, and that the log x and log y axes (where the logarithms are 0) are where x and y themselves are 1. Comparison of linear, concave, and convex functions when plotted using a linear scale (left) or a log scale (right).
All polylogarithmic functions of n are o(n ε) for every exponent ε > 0 (for the meaning of this symbol, see small o notation), that is, a polylogarithmic function grows more slowly than any positive exponent. This observation is the basis for the soft O notation Õ(n).
The exponential of a matrix A is defined by =!. Given a matrix B, another matrix A is said to be a matrix logarithm of B if e A = B.. Because the exponential function is not bijective for complex numbers (e.g. = =), numbers can have multiple complex logarithms, and as a consequence of this, some matrices may have more than one logarithm, as explained below.
The area of the blue region converges to Euler's constant. Euler's constant (sometimes called the Euler–Mascheroni constant) is a mathematical constant, usually denoted by the lowercase Greek letter gamma (γ), defined as the limiting difference between the harmonic series and the natural logarithm, denoted here by log:
Although these terms are not further defined, Euclid uses them to construct more complex geometric concepts. [5] Whether a particular function or value is undefined, depends on the rules of the formal system in which it is used. For example, the imaginary number is undefined within the set of real numbers.