Search results
Results from the WOW.Com Content Network
Lead shielding refers to the use of lead as a form of radiation protection to shield people or objects from radiation so as to reduce the effective dose. Lead can effectively attenuate certain kinds of radiation because of its high density and high atomic number; principally, it is effective at stopping gamma rays and x-rays.
This increases the strength of the material, mitigating the embrittling effect of radiation. [1] Radiation can also lead to segregation and diffusion of atoms within materials, leading to phase segregation and voids as well as enhancing the effects of stress corrosion cracking through changes in both the water chemistry and alloy microstructure ...
It can then decay to a lower energy state by emitting a gamma ray photon, in a process called gamma decay. The emission of a gamma ray from an excited nucleus typically requires only 10 −12 seconds. Gamma decay may also follow nuclear reactions such as neutron capture, nuclear fission, or nuclear fusion.
Gamma rays are better absorbed by materials with high atomic numbers and high density, although neither effect is important compared to the total mass per area in the path of the gamma ray. Ultraviolet (UV) radiation is ionizing in its shortest wavelengths but is not penetrating, so it can be shielded by thin opaque layers such as sunscreen ...
Barriers of lead, concrete, or water are often used to give effective protection from more penetrating forms of ionizing radiation such as gamma rays and neutrons. Some radioactive materials are stored or handled underwater or by remote control in rooms constructed of thick concrete or lined with lead.
UV, X-rays, and gamma rays are thus collectively called ionizing radiation; exposure to them can damage living tissue. UV can also cause substances to glow with visible light; this is called fluorescence. UV fluorescence is used by forensics to detect any evidence like blood and urine, that is produced by a crime scene.
No gamma-ray bursts from within our own galaxy, the Milky Way, have been observed, [161] and the question of whether one has ever occurred remains unresolved. In light of evolving understanding of gamma-ray bursts and their progenitors, the scientific literature records a growing number of local, past, and future GRB candidates.
The penetration depth of X-rays in water as function of photon energy. Penetration depth is a measure of how deep light or any electromagnetic radiation can penetrate into a material. It is defined as the depth at which the intensity of the radiation inside the material falls to 1/ e (about 37%) of its original value at (or more properly, just ...