Search results
Results from the WOW.Com Content Network
Difference in differences (DID [1] or DD [2]) is a statistical technique used in econometrics and quantitative research in the social sciences that attempts to mimic an experimental research design using observational study data, by studying the differential effect of a treatment on a 'treatment group' versus a 'control group' in a natural experiment. [3]
An observational study would typically start with a group of symptomatic subjects and work backwards to find those who were given the medication and later developed the symptoms. Thus a subset of the treated group was determined based on the presence of symptoms, instead of by random assignment.
For example, in observational designs, participants are not assigned randomly to conditions, and so if there are differences found in outcome variables between conditions, it is likely that there is something other than the differences between the conditions that causes the differences in outcomes, that is – a third variable.
There are two major types of causal statistical studies: experimental studies and observational studies. In both types of studies, the effect of differences of an independent variable (or variables) on the behavior of the dependent variable are observed. The difference between the two types lies in how the study is actually conducted.
By definition, observational studies lack the manipulation required for Baconian experiments. In addition, observational studies (e.g., in biological or social systems) often involve variables that are difficult to quantify or control. Observational studies are limited because they lack the statistical properties of randomized experiments.
Matching is a statistical technique that evaluates the effect of a treatment by comparing the treated and the non-treated units in an observational study or quasi-experiment (i.e. when the treatment is not randomly assigned).
A "sampling unit" (or unit of observation) is typically thought of as an object that has been sampled from a statistical population. This term is commonly used in opinion polling and survey sampling. For example, in an experiment on educational methods, methods may be applied to classrooms of students.
While the tools of data analysis work best on data from randomized studies, they are also applied to other kinds of data. For example, from natural experiments and observational studies, in which case the inference is dependent on the model chosen by the statistician, and so subjective. [4] [5]