enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Electrical resistivity and conductivity - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivity_and...

    This means that all pure copper (Cu) wires (which have not been subjected to distortion of their crystalline structure etc.), irrespective of their shape and size, have the same resistivity, but a long, thin copper wire has a much larger resistance than a thick, short copper wire. Every material has its own characteristic resistivity.

  3. International Annealed Copper Standard - Wikipedia

    en.wikipedia.org/wiki/International_Annealed...

    Sometime around 1913, several copper samples from 14 important refiners and wire manufacturers were analyzed by the U.S. Bureau of Standards. The average resistance of the samples was determined to be 0.15292 Ω for copper wires with a mass of 1 gram of uniform cross section and 1 meter in length at 20 °C. In the United States this is usually ...

  4. Electrical resistivities of the elements (data page) - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistivities_of...

    As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition.CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals

  5. Electrical resistance and conductance - Wikipedia

    en.wikipedia.org/wiki/Electrical_resistance_and...

    Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...

  6. Wiedemann–Franz law - Wikipedia

    en.wikipedia.org/wiki/Wiedemann–Franz_law

    Plot of the Wiedemann–Franz law for copper. Left axis: specific electric resistance ρ in 10 −10 Ω m, red line and specific thermal conductivity λ in W/(K m), green line. Right axis: ρ times λ in 100 U 2 /K, blue line and Lorenz number ρ λ / K in U 2 /K 2, pink line. Lorenz number is more or less constant.

  7. Copper conductor - Wikipedia

    en.wikipedia.org/wiki/Copper_conductor

    Also, comparatively, more copper wire can fit in a given conduit than conductors with lower conductivities. This greater wire fill is a special advantage when a system is rewired or expanded. [17] Copper building wire is compatible with brass and quality plated screws. The wire provides connections that will not corrode or creep.

  8. IEC 60228 - Wikipedia

    en.wikipedia.org/wiki/IEC_60228

    Comparison of SWG (red), AWG (blue) and IEC 60228 (black) wire gauge sizes from 0.03 to 200 mm² to scale on a 1 mm grid – in the SVG file, hover over a size to highlight it. In engineering applications, it is often most convenient to describe a wire in terms of its cross-section area, rather than its diameter, because the cross section is directly proportional to its strength and weight ...

  9. Transmission line - Wikipedia

    en.wikipedia.org/wiki/Transmission_line

    Cables are similar to twisted pair in that many cores are bundled into the same cable but only one conductor is provided per circuit and there is no twisting. All the circuits on the same route use a common path for the return current (earth return). There is a power transmission version of single-wire earth return in use in many locations.