enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pendulum (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Pendulum_(mechanics)

    A pendulum is a body suspended from a fixed support such that it freely swings back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position.

  3. Pendulum - Wikipedia

    en.wikipedia.org/wiki/Pendulum

    The presence of the acceleration of gravity g in the periodicity equation (1) for a pendulum means that the local gravitational acceleration of the Earth can be calculated from the period of a pendulum. A pendulum can therefore be used as a gravimeter to measure the local gravity, which varies by over 0.5% across the surface of the Earth. [107]

  4. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    The period of a mass attached to a pendulum of length l with gravitational acceleration is given by = This shows that the period of oscillation is independent of the amplitude and mass of the pendulum but not of the acceleration due to gravity, g {\displaystyle g} , therefore a pendulum of the same length on the Moon would swing more slowly due ...

  5. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    Assuming no damping, the differential equation governing a simple pendulum of length , where is the local acceleration of gravity, is + ⁡ = If the maximal displacement of the pendulum is small, we can use the approximation sin ⁡ θ ≈ θ {\displaystyle \sin \theta \approx \theta } and instead consider the equation d 2 θ d t 2 + g l θ = 0 ...

  6. Kater's pendulum - Wikipedia

    en.wikipedia.org/wiki/Kater's_pendulum

    A pendulum can be used to measure the acceleration of gravity g because for narrow swings its period of swing T depends only on g and its length L: [2] = So by measuring the length L and period T of a pendulum, g can be calculated.

  7. Conical pendulum - Wikipedia

    en.wikipedia.org/wiki/Conical_pendulum

    Monumental conical pendulum clock by Farcot, 1878. A conical pendulum consists of a weight (or bob) fixed on the end of a string or rod suspended from a pivot.Its construction is similar to an ordinary pendulum; however, instead of swinging back and forth along a circular arc, the bob of a conical pendulum moves at a constant speed in a circle or ellipse with the string (or rod) tracing out a ...

  8. Euler's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Euler's_laws_of_motion

    a cm is the linear acceleration of the center of mass of the body, m is the mass of the body, α is the angular acceleration of the body, and; I is the moment of inertia of the body about its center of mass. See also Euler's equations (rigid body dynamics).

  9. Elastic pendulum - Wikipedia

    en.wikipedia.org/wiki/Elastic_pendulum

    In physics and mathematics, in the area of dynamical systems, an elastic pendulum [1] [2] (also called spring pendulum [3] [4] or swinging spring) is a physical system where a piece of mass is connected to a spring so that the resulting motion contains elements of both a simple pendulum and a one-dimensional spring-mass system. [2]