Search results
Results from the WOW.Com Content Network
In mathematical finance, Margrabe's formula [1] is an option pricing formula applicable to an option to exchange one risky asset for another risky asset at maturity. It was derived by William Margrabe (PhD Chicago) in 1978. Margrabe's paper has been cited by over 2000 subsequent articles.
Here the price of the option is its discounted expected value; see risk neutrality and rational pricing. The technique applied then, is (1) to generate a large number of possible, but random , price paths for the underlying (or underlyings) via simulation , and (2) to then calculate the associated exercise value (i.e. "payoff") of the option ...
The trinomial tree is a lattice-based computational model used in financial mathematics to price options. It was developed by Phelim Boyle in 1986. It is an extension of the binomial options pricing model, and is conceptually similar. It can also be shown that the approach is equivalent to the explicit finite difference method for option ...
For Fugit — where n is the number of time-steps in the tree; t is the time to option expiry; and i is the current time-step — the calculation is as follows: [1]; see also [2] (1) set the fugit of all nodes at the end of the tree equal to i = n
In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options.Essentially, the model uses a "discrete-time" (lattice based) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.
Delta and gamma, being sensitivities of option value w.r.t. price, are approximated given differences between option prices - with their related spot - in the same time step. Theta, sensitivity to time, is likewise estimated given the option price at the first node in the tree and the option price for the same spot in a later time step. (Second ...
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
The discrete difference equations may then be solved iteratively to calculate a price for the option. [4] The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a ...