Search results
Results from the WOW.Com Content Network
This gives the map two standard parallels. In this way, deviation from unit scale can be minimized within a region of interest that lies largely between the two standard parallels. Unlike other conic projections, no true secant form of the projection exists because using a secant cone does not yield the same scale along both standard parallels. [2]
General parameters used for constructing nose cone profiles. Given the problem of the aerodynamic design of the nose cone section of any vehicle or body meant to travel through a compressible fluid medium (such as a rocket or aircraft, missile, shell or bullet), an important problem is the determination of the nose cone geometrical shape for optimum performance.
The base case of the induction is a cone with only two creases and two equal-angle wedges, which can obviously be flat-folded by using a mountain fold for both creases. There are two ways to choose which folds to use in each step of this method, and each step eliminates two creases.
The cone over a closed interval I of the real line is a filled-in triangle (with one of the edges being I), otherwise known as a 2-simplex (see the final example). The cone over a polygon P is a pyramid with base P. The cone over a disk is the solid cone of classical geometry (hence the concept's name). The cone over a circle given by
Evidently, conformality of metrics is an equivalence relation. Here are some formulas for conformal changes in tensors associated with the metric. (Quantities marked with a tilde will be associated with ~, while those unmarked with such will be associated with .)
Effective charge mass for thin charges - a 60° cone. The basic Gurney equations for flat sheets assume that the sheet of material is a large diameter. Small explosive charges, where the explosive's diameter is not significantly larger than its thickness, have reduced effectiveness as gas and energy are lost to the sides. [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines connecting a common point, the apex, to all of the points on a base that is in a plane that