enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    In this example, the triangle's side lengths and area are integers, making it a Heronian triangle. However, Heron's formula works equally well when the side lengths are real numbers. As long as they obey the strict triangle inequality, they define a triangle in the Euclidean plane whose area is a positive real number.

  3. Area of a triangle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_triangle

    The area of a triangle can be demonstrated, for example by means of the congruence of triangles, as half of the area of a parallelogram that has the same base length and height. A graphic derivation of the formula T = h 2 b {\displaystyle T={\frac {h}{2}}b} that avoids the usual procedure of doubling the area of the triangle and then halving it.

  4. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    The parallelepiped with D 4h symmetry is known as a square cuboid, which has two square faces and four congruent rectangular faces. The parallelepiped with D 3d symmetry is known as a trigonal trapezohedron , which has six congruent rhombic faces (also called an isohedral rhombohedron ).

  5. Tetrahedron - Wikipedia

    en.wikipedia.org/wiki/Tetrahedron

    A negative value of the determinant means that a tetrahedron cannot be constructed with the given distances. This formula, sometimes called Tartaglia's formula, is essentially due to the painter Piero della Francesca in the 15th century, as a three-dimensional analogue of the 1st century Heron's formula for the area of a triangle. [20]

  6. List of centroids - Wikipedia

    en.wikipedia.org/wiki/List_of_centroids

    The following is a list of centroids of various two-dimensional and three-dimensional objects. The centroid of an object in -dimensional space is the intersection of all hyperplanes that divide into two parts of equal moment about the hyperplane.

  7. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

  8. Pick's theorem - Wikipedia

    en.wikipedia.org/wiki/Pick's_theorem

    After relating area to the number of triangles in this way, the proof concludes by using Euler's polyhedral formula to relate the number of triangles to the number of grid points in the polygon. [5] Tiling of the plane by copies of a triangle with three integer vertices and no other integer points, as used in the proof of Pick's theorem

  9. Bretschneider's formula - Wikipedia

    en.wikipedia.org/wiki/Bretschneider's_formula

    Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle.. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give [2] [3]