enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ultimate tensile strength - Wikipedia

    en.wikipedia.org/wiki/Ultimate_tensile_strength

    The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen.However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

  3. Titanium alloys - Wikipedia

    en.wikipedia.org/wiki/Titanium_alloys

    Beta titanium alloys have excellent formability and can be easily welded. [10] Beta titanium is nowadays largely utilized in the orthodontic field and was adopted for orthodontics use in the 1980s. [10] This type of alloy replaced stainless steel for certain uses, as stainless steel had dominated orthodontics since the 1960s.

  4. Yield (engineering) - Wikipedia

    en.wikipedia.org/wiki/Yield_(engineering)

    The yield strength or yield stress is a material property and is the stress corresponding to the yield point at which the material begins to deform plastically. The yield strength is often used to determine the maximum allowable load in a mechanical component, since it represents the upper limit to forces that can be applied without producing ...

  5. Tensile testing - Wikipedia

    en.wikipedia.org/wiki/Tensile_testing

    A tensile specimen usually has a standardized sample cross-section. It has two shoulders and a gauge (section) in between. The shoulders and grip section are generally larger than the gauge section by 33% [4] so they can be easily gripped. The gauge section's smaller diameter also allows the deformation and failure to occur in this area. [2] [5]

  6. Yield strength anomaly - Wikipedia

    en.wikipedia.org/wiki/Yield_strength_anomaly

    The peak yield strength is also dependent on percent aluminum in the FeAl alloy. As the percent aluminum increases, the peak yield strength occurs at lower temperatures. [8] The yield strength anomaly in FeAl alloys can be hidden if thermal vacancies are not minimized through a slow anneal at a relatively low temperature (~400 °C for ~5 days ...

  7. High-strength low-alloy steel - Wikipedia

    en.wikipedia.org/wiki/High-strength_low-alloy_steel

    Microalloyed steels: Steels which contain very small additions of niobium, vanadium, and/or titanium to obtain a refined grain size and/or precipitation hardening. A common type of micro-alloyed steel is improved-formability HSLA. It has a yield strength up to 80,000 psi (550 MPa) but costs only 24% more than A36 steel (36,000 psi (250 MPa)).

  8. Steel grades - Wikipedia

    en.wikipedia.org/wiki/Steel_grades

    The next set of 3 digits gives the steel's minimum yield strength. So S355 has a minimum yield strength of 355 MPa for the smallest thickness range covered by the relevant standard – i.e. EN10025. [2] Below is a table indicating the most common application codes.

  9. Liquidmetal - Wikipedia

    en.wikipedia.org/wiki/Liquidmetal

    The zirconium and titanium based Liquidmetal alloys achieved yield strength of over 1723 MPa, nearly twice the strength of conventional crystalline titanium alloys (Ti 6 Al 4 V is ~830 MPa), and about the strength of high-strength steels and some highly engineered bulk composite materials (see tensile strength for a list of common materials ...