Search results
Results from the WOW.Com Content Network
The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
In thermal conductivity, k is defined as "the quantity of heat, Q, transmitted in time (t) through a thickness (L), in a direction normal to a surface of area (A), due to a temperature difference (ΔT) [...]". Thermal conductivity is a material property that is primarily dependent on the medium's phase, temperature, density, and molecular bonding.
A 2008 review paper written by Philips researcher Clemens J. M. Lasance notes that: "Although there is an analogy between heat flow by conduction (Fourier's law) and the flow of an electric current (Ohm’s law), the corresponding physical properties of thermal conductivity and electrical conductivity conspire to make the behavior of heat flow ...
In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. [1] It is a measure of the rate of heat transfer inside a material and has SI units of m 2 /s. It is an intensive property.
In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat. For most materials, the amount of heat conducted varies (usually non-linearly) with temperature. [1] Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.
In building design, thermal mass is a property of the matter of a building that requires a flow of heat in order for it to change temperature. Not all writers agree on what physical property of matter "thermal mass" describes. Most writers use it as a synonym for heat capacity, the ability of a body to store thermal energy.
In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density [1], heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m 2). It has both a direction and a magnitude, and so it is a vector quantity.
The thermal conductivity is a characteristic of the particular material. Values of thermal conductivities for various materials are listed in the list of thermal conductivities . As mentioned earlier in the article the convection heat transfer coefficient for each stream depends on the type of fluid, flow properties and temperature properties.