enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.

  3. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...

  4. Contraction hierarchies - Wikipedia

    en.wikipedia.org/wiki/Contraction_hierarchies

    The shortest path in a graph can be computed using Dijkstra's algorithm but, given that road networks consist of tens of millions of vertices, this is impractical. [1] Contraction hierarchies is a speed-up method optimized to exploit properties of graphs representing road networks. [ 2 ]

  5. Bidirectional search - Wikipedia

    en.wikipedia.org/wiki/Bidirectional_search

    As in A* search, bi-directional search can be guided by a heuristic estimate of the remaining distance to the goal (in the forward tree) or from the start (in the backward tree). Ira Pohl was the first one to design and implement a bi-directional heuristic search algorithm. Search trees emanating from the start and goal nodes failed to meet in ...

  6. Euclidean shortest path - Wikipedia

    en.wikipedia.org/wiki/Euclidean_shortest_path

    There are many results on computing shortest paths which stays on a polyhedral surface. Given two points s and t, say on the surface of a convex polyhedron, the problem is to compute a shortest path that never leaves the surface and connects s with t. This is a generalization of the problem from 2-dimension but it is much easier than the 3 ...

  7. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Compared to Dijkstra's algorithm, the A* algorithm only finds the shortest path from a specified source to a specified goal, and not the shortest-path tree from a specified source to all possible goals. This is a necessary trade-off for using a specific-goal-directed heuristic. For Dijkstra's algorithm, since the entire shortest-path tree is ...

  8. Floyd–Warshall algorithm - Wikipedia

    en.wikipedia.org/wiki/Floyd–Warshall_algorithm

    The Floyd–Warshall algorithm is an example of dynamic programming, and was published in its currently recognized form by Robert Floyd in 1962. [3] However, it is essentially the same as algorithms previously published by Bernard Roy in 1959 [4] and also by Stephen Warshall in 1962 [5] for finding the transitive closure of a graph, [6] and is closely related to Kleene's algorithm (published ...

  9. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    Pathfinding or pathing is the search, by a computer application, for the shortest route between two points. It is a more practical variant on solving mazes. This field of research is based heavily on Dijkstra's algorithm for finding the shortest path on a weighted graph.