Search results
Results from the WOW.Com Content Network
Buoyancy-forced downwelling, often termed convection, is the deepening of a water parcel due to a change in the density of that parcel.Density changes in the surface ocean are primarily the result of evaporation, precipitation, heating, cooling, or the introduction and mixing of an alternate water or salinity source, such as river input or brine rejection.
Wind-induced upwelling is generated by temperature differences between the warm, light air above the land and the cooler denser air over the sea. In temperate latitudes, the temperature contrast is greatly seasonably variable, creating periods of strong upwelling in the spring and summer, to weak or no upwelling in the winter. For example, off ...
Mass movement of water between latitudes is affected by coriolis forces, which impart motion across the current direction, and movement towards or away from a land mass or other topographic obstruction may leave a deficit or excess which lowers or raises the sea level locally, driving upwelling and downwelling to compensate. The major ...
Due to upwelling and downwelling, which are both wind-driven, mixing of different layers can occur through the rise of cold nutrient-rich and sinking of warm water, respectively. Generally, layers are based on water density: heavier, and hence denser, water is below the lighter water, representing a stable stratification.
After upwelling, the water is understood to take one of two pathways. Water surfacing close to Antarctica will likely be cooled by Antarctic sea ice and sink back into the lower cell of the circulation. Some of this water will rejoin the AABW but the rest of the lower-cell flow will eventually reach the depths of the Pacific and Indian oceans. [18]
Ocean currents move both horizontally, on scales that can span entire oceans, as well as vertically, with vertical currents (upwelling and downwelling) playing an important role in the movement of nutrients and gases, such as carbon dioxide, between the surface and the deep ocean.
On the contrary, this process creates downwelling when the cyclone decays and the pycnocline returns to its original state. Through such mechanism eddy pumping generates upwelling of cold, nutrient rich deep waters in cyclonic eddies and downwelling of warm, nutrient poor, surface water in anticyclonic eddies.
Upwelling brings cooler, nutrient-rich water to the surface, while downwelling pushes surface waters to greater depths, impacting local ecosystems and global climate. Understanding the complex interactions between temperature, salinity, and density is essential for predicting ocean circulation patterns, climate change effects, and the health of ...