Search results
Results from the WOW.Com Content Network
Quantity (common name/s) (Common) symbol/s Defining equation SI units Dimension Number of atoms N = Number of atoms remaining at time t. N 0 = Initial number of atoms at time t = 0
The handbook was originally published in 1928 by the Chemical Rubber Company (now CRC Press) as a supplement (Mathematical Tables) to the CRC Handbook of Chemistry and Physics. Beginning with the 10th edition (1956), it was published as CRC Standard Mathematical Tables and kept this title up to the 29th edition (1991).
Discrete mathematics is the study of mathematical structures that can be considered "discrete" (in a way analogous to discrete variables, having a bijection with the set of natural numbers) rather than "continuous" (analogously to continuous functions).
Kawasaki's theorem (mathematics of paper folding) Kelvin's circulation theorem ; Kempf–Ness theorem (algebraic geometry) Kepler conjecture (discrete geometry) Kharitonov's theorem (control theory) Khinchin's theorem (probability) Killing–Hopf theorem (Riemannian geometry) Kinoshita–Lee–Nauenberg theorem (quantum field theory)
Sums are over the discrete variable s z, integrals over continuous positions r. For clarity and brevity, the coordinates are collected into tuples, the indices label the particles (which cannot be done physically, but is mathematically necessary). Following are general mathematical results, used in calculations.
Greek letters are used in mathematics, science, engineering, and other areas where mathematical notation is used as symbols for constants, special functions, and also conventionally for variables representing certain quantities. In these contexts, the capital letters and the small letters represent distinct and unrelated entities.
Discrete mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.In contrast to real numbers that have the property of varying "smoothly", the objects studied in discrete mathematics – such as integers, graphs, and statements in logic [1] – do not vary smoothly in this way, but have distinct, separated values. [2]
Mathematical chemistry [1] is the area of research engaged in novel applications of mathematics to chemistry; it concerns itself principally with the mathematical modeling of chemical phenomena. [2] Mathematical chemistry has also sometimes been called computer chemistry , but should not be confused with computational chemistry .