Search results
Results from the WOW.Com Content Network
The chloralkali process (also chlor-alkali and chlor alkali) is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide (caustic soda), [ 1 ] which are commodity chemicals required by industry.
Another earlier process to produce chlorine was to heat brine with acid and manganese dioxide. 2 NaCl + 2H 2 SO 4 + MnO 2 → Na 2 SO 4 + MnSO 4 + 2 H 2 O + Cl 2. Using this process, chemist Carl Wilhelm Scheele was the first to isolate chlorine in a laboratory. The manganese can be recovered by the Weldon process. [11]
The chlor-alkali industry is a major consumer of the world's energy budget. This process converts concentrated sodium chloride solutions into chlorine and sodium hydroxide, which are used to make many other materials and chemicals. The process involves two parallel reactions: 2 Cl − → Cl 2 + 2 e − 2 H 2 O + 2 e − → H 2 + 2 OH −
The Deacon process, invented by Henry Deacon, is a process used during the manufacture of alkalis (the initial end product was sodium carbonate) by the Leblanc process. Hydrogen chloride gas was converted to chlorine gas, which was then used to manufacture a commercially valuable bleaching powder , and at the same time the emission of waste ...
The Castner–Kellner process is a method of electrolysis on an aqueous alkali chloride solution (usually sodium chloride solution) to produce the corresponding alkali hydroxide, [1] invented by American Hamilton Castner and Austrian Carl Kellner in the 1890s.
This article needs to be updated.The reason given is: This is a historical article, primarily based on the Encyclopædia Britannica Eleventh Edition.Information on more recent methods should be integrated from Sodium hydroxide#Production, Chloralkali process, and others, to make this a workable overview of all the historical and modern methods.
The last image we have of Patrick Cagey is of his first moments as a free man. He has just walked out of a 30-day drug treatment center in Georgetown, Kentucky, dressed in gym clothes and carrying a Nike duffel bag.
Nafion was the direct result of the chlor-alkali industry addressing these concerns; Nafion could tolerate the high temperatures, high electrical currents, and corrosive environment of the electrolytic cells. [3] [4] [7] The figure to the right shows a chlor-alkali cell where Nafion functions as a membrane between half cells.