Search results
Results from the WOW.Com Content Network
[12] [13] Copper(II) chloride reacts with several metals to produce copper metal or copper(I) chloride (CuCl) with oxidation of the other metal. To convert copper(II) chloride to copper(I) chloride, it can be convenient to reduce an aqueous solution with sulfur dioxide as the reductant: [8] 2 CuCl 2 + SO 2 + 2 H 2 O → 2 CuCl + 2 HCl + H 2 SO 4
Temperature 298.15 K (25.00 °C; 77.00 °F); Effective concentration (activity) 1 mol/L for each aqueous or amalgamated (mercury-alloyed) species; Unit activity for each solvent and pure solid or liquid species; and
The main use of copper(I) chloride is as a precursor to the fungicide copper oxychloride. For this purpose aqueous copper(I) chloride is generated by comproportionation and then air-oxidized: [12] Cu + CuCl 2 → 2 CuCl 4 CuCl + O 2 + 2 H 2 O → Cu 3 Cl 2 (OH) 4 + CuCl 2. Copper(I) chloride catalyzes a variety of organic reactions, as
The nature of the electroactive species (the analyte) in the solution also critically affects the exchange current densities, both the reduced and oxidized form. Less important but still relevant are the environment of the solution including the solvent, nature of other electrolytes, and temperature.
For the electrolysis of a neutral (pH 7) sodium chloride solution, the reduction of sodium ion is thermodynamically very difficult and water is reduced evolving hydrogen leaving hydroxide ions in solution.
Simplified diagram of the Copper–Chlorine cycle. The copper–chlorine cycle (Cu–Cl cycle) is a four-step thermochemical cycle for the production of hydrogen. The Cu–Cl cycle is a hybrid process that employs both thermochemical and electrolysis steps. It has a maximum temperature requirement of about 530 degrees Celsius. [1]
Electrolysis (a.k.a. electrolytic refining) Rubidium Rb Rb + Potassium K K + Sodium Na Na + Lithium Li Li + Barium Ba Ba 2+ Strontium Sr Sr 2+ Calcium Ca Ca 2+ Magnesium Mg Mg 2+ reacts very slowly with cold water, but rapidly in boiling water, and very vigorously with acids: Beryllium Be Be 2+ reacts with acids and steam Aluminium Al Al 3 ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.