Search results
Results from the WOW.Com Content Network
a) The expression inside the square root has to be positive, or else the resulting interval will be imaginary. b) When g is very close to 1, the confidence interval is infinite. c) When g is greater than 1, the overall divisor outside the square brackets is negative and the confidence interval is exclusive.
In statistics, interval estimation is the use of sample data to estimate an interval of possible values of a parameter of interest. This is in contrast to point estimation, which gives a single value. [1] The most prevalent forms of interval estimation are confidence intervals (a frequentist method) and credible intervals (a Bayesian method). [2]
The concept of fiducial inference can be outlined by comparing its treatment of the problem of interval estimation in relation to other modes of statistical inference. A confidence interval , in frequentist inference , with coverage probability γ has the interpretation that among all confidence intervals computed by the same method, a ...
Approximate estimate of the value range. The so-called "dependency" problem is a major obstacle to the application of interval arithmetic. Although interval methods can determine the range of elementary arithmetic operations and functions very accurately, this is not always true with more complicated functions.
If one makes the parametric assumption that the underlying distribution is a normal distribution, and has a sample set {X 1, ..., X n}, then confidence intervals and credible intervals may be used to estimate the population mean μ and population standard deviation σ of the underlying population, while prediction intervals may be used to estimate the value of the next sample variable, X n+1.
In addition, 95% confidence intervals are also 83% prediction intervals: one (pre experimental) confidence interval has an 83% chance of covering any future experiment's mean. [3] As such, knowing a single experiment's 95% confidence intervals gives the analyst a reasonable range for the population mean.
a point estimate, i.e. a particular value that best approximates some parameter of interest; an interval estimate, e.g. a confidence interval (or set estimate), i.e. an interval constructed using a dataset drawn from a population so that, under repeated sampling of such datasets, such intervals would contain the true parameter value with the ...
This is not as much of a problem for intervals that are lower and upper bounds derived from a set of probability distributions, e.g., a set of priors followed by conditionalization on each member of the set. However, it can lead to the question why some distributions are included in the set of priors and some are not.