enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    a depth-first search starting at the node A, assuming that the left edges in the shown graph are chosen before right edges, and assuming the search remembers previously visited nodes and will not repeat them (since this is a small graph), will visit the nodes in the following order: A, B, D, F, E, C, G.

  3. Graph (abstract data type) - Wikipedia

    en.wikipedia.org/wiki/Graph_(abstract_data_type)

    In computer science, a graph is an abstract data type that is meant to implement the undirected graph and directed graph concepts from the field of graph theory within mathematics. A graph data structure consists of a finite (and possibly mutable) set of vertices (also called nodes or points ), together with a set of unordered pairs of these ...

  4. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    A depth-first search (DFS) is an algorithm for traversing a finite graph. DFS visits the child vertices before visiting the sibling vertices; that is, it traverses the depth of any particular path before exploring its breadth. A stack (often the program's call stack via recursion) is generally used when implementing the algorithm.

  5. Topological sorting - Wikipedia

    en.wikipedia.org/wiki/Topological_sorting

    An alternative algorithm for topological sorting is based on depth-first search.The algorithm loops through each node of the graph, in an arbitrary order, initiating a depth-first search that terminates when it hits any node that has already been visited since the beginning of the topological sort or the node has no outgoing edges (i.e., a leaf node):

  6. Trémaux tree - Wikipedia

    en.wikipedia.org/wiki/Trémaux_tree

    Every finite connected undirected graph has at least one Trémaux tree. [4] One can construct such a tree by performing a depth-first search and connecting each vertex (other than the starting vertex of the search) to the earlier vertex from which it was discovered. The tree constructed in this way is known as a depth-first search tree.

  7. Widest path problem - Wikipedia

    en.wikipedia.org/wiki/Widest_path_problem

    In any graph, directed or undirected, there is a straightforward algorithm for finding a widest path once the weight of its minimum-weight edge is known: simply delete all smaller edges and search for any path among the remaining edges using breadth-first search or depth-first search.

  8. Kruskal's algorithm - Wikipedia

    en.wikipedia.org/wiki/Kruskal's_algorithm

    For a graph with E edges and V vertices, Kruskal's algorithm can be shown to run in time O(E log E) time, with simple data structures. Here, O expresses the time in big O notation , and log is a logarithm to any base (since inside O -notation logarithms to all bases are equivalent, because they are the same up to a constant factor).

  9. Spanning tree - Wikipedia

    en.wikipedia.org/wiki/Spanning_tree

    A single spanning tree of a graph can be found in linear time by either depth-first search or breadth-first search. Both of these algorithms explore the given graph, starting from an arbitrary vertex v, by looping through the neighbors of the vertices they discover and adding each unexplored neighbor to a data structure to be explored later.