enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cross product - Wikipedia

    en.wikipedia.org/wiki/Cross_product

    The cross product with respect to a right-handed coordinate system. In mathematics, the cross product or vector product (occasionally directed area product, to emphasize its geometric significance) is a binary operation on two vectors in a three-dimensional oriented Euclidean vector space (named here ), and is denoted by the symbol .

  3. Lists of vector identities - Wikipedia

    en.wikipedia.org/wiki/Lists_of_vector_identities

    Vector algebra relations — regarding operations on individual vectors such as dot product, cross product, etc. Vector calculus identities — regarding operations on vector fields such as divergence, gradient, curl, etc.

  4. Vector notation - Wikipedia

    en.wikipedia.org/wiki/Vector_notation

    The cross product of two vectors u and v would be represented as: By some conventions (e.g. in France and in some areas of higher mathematics), this is also denoted by a wedge, [ 12 ] which avoids confusion with the wedge product since the two are functionally equivalent in three dimensions: u ∧ v {\displaystyle \mathbf {u} \wedge \mathbf {v} }

  5. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...

  6. Vector algebra relations - Wikipedia

    en.wikipedia.org/wiki/Vector_algebra_relations

    The following are important identities in vector algebra.Identities that only involve the magnitude of a vector ‖ ‖ and the dot product (scalar product) of two vectors A·B, apply to vectors in any dimension, while identities that use the cross product (vector product) A×B only apply in three dimensions, since the cross product is only defined there.

  7. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    In Cartesian coordinates, the divergence of a continuously differentiable vector field = + + is the scalar-valued function: ⁡ = = (, , ) (, , ) = + +.. As the name implies, the divergence is a (local) measure of the degree to which vectors in the field diverge.

  8. Right-hand rule - Wikipedia

    en.wikipedia.org/wiki/Right-hand_rule

    In mathematics and physics, the right-hand rule is a convention and a mnemonic, utilized to define the orientation of axes in three-dimensional space and to determine the direction of the cross product of two vectors, as well as to establish the direction of the force on a current-carrying conductor in a magnetic field.

  9. Einstein notation - Wikipedia

    en.wikipedia.org/wiki/Einstein_notation

    In three dimensions, the cross product of two vectors with respect to a positively oriented orthonormal basis, meaning that =, can be expressed as: = Here, ε j k i = ε i j k {\displaystyle \varepsilon _{\,jk}^{i}=\varepsilon _{ijk}} is the Levi-Civita symbol .